MHB Inequality involving Gaussian integral

Click For Summary
The discussion focuses on solving the inequality involving Gaussian integrals, specifically comparing the integral of e^(-x^2) from 0 to 1 with the integral of e^(x^2) from 1 to 2. It is established that the left side is less than or equal to 1. The right side is analyzed using the squeeze theorem, noting that e^(x^2) is strictly increasing on the interval [1,2], with minimum and maximum values at the endpoints. The comparison theorem is applied, confirming that the integral from 1 to 2 is indeed greater than 1, thus validating the inequality. The conclusion affirms that the inequality holds true based on these evaluations.
ChrisOlafsson
Messages
2
Reaction score
0
I'm trying to solve the inequality:

$$
\int \limits_0^1 e^{-x^2} \leq \int \limits_1^2 e^{x^2} dx
$$I know that $\int \limits_0^1 e^{-x^2} \leq 1$, but don't see how to take it from there.

Any ideas?
 
Physics news on Phys.org
Hi and welcome to MHB!

Note that:
$$(b-a)\min_{a\le x\le b}f(x)\quad\le\quad\int_a^b f(x)\,dx \quad\le\quad (b-a)\max_{a\le x\le b}f(x)$$

If we apply that to the left side of your inequality, it gives us what you already know.
That leaves the right side...
 
Thanks Klaas! So if I understand correctly, I can compute the RHS using the squeeze theorem.

Since $e^{x^2}$ is strictly increasing on $J = [1,2]$, with absolute minimum value $f(1) = e^{1^2} \approx 2.71$ and absolute maximum value $f(2) = e^{2^2} = e^4 \approx 54.59$.

Using the comparison theorem,
$
e^{1} \leq \int \limits_1^2 e^{x^2} \leq e^{2^2}
$
and since since this area is greater than 1, consequently, the inequality holds.

Is this what you meant?
 
ChrisOlafsson said:
Thanks Klaas! So if I understand correctly, I can compute the RHS using the squeeze theorem.

Since $e^{x^2}$ is strictly increasing on $J = [1,2]$, with absolute minimum value $f(1) = e^{1^2} \approx 2.71$ and absolute maximum value $f(2) = e^{2^2} = e^4 \approx 54.59$.

Using the comparison theorem,
$
e^{1} \leq \int \limits_1^2 e^{x^2} \leq e^{2^2}
$
and since since this area is greater than 1, consequently, the inequality holds.

Is this what you meant?

Yep. (Nod)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
3K
  • · Replies 105 ·
4
Replies
105
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
3
Views
3K