Inequality of Cardinality of Sets

Click For Summary

Discussion Overview

The discussion revolves around the proof of the inequality of cardinality of sets, specifically addressing the claim that if \( A \subseteq B \), then \( |A| \le |B| \). Participants explore the definitions and implications of cardinality in both finite and infinite sets, as well as the conditions under which the proof holds.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents a proof that if \( A \subseteq B \), then \( |A| \le |B| \), using the identity function \( f: A \rightarrow B \) defined by \( f(x) = x \) as an injection.
  • Another participant questions whether the theorem presupposes that \( A \) and \( B \) are finite sets, noting that for infinite sets, cardinality cannot be expressed as numbers.
  • Some participants clarify that the definition of cardinality applies to both finite and infinite sets, and the proof is correct under the provided definition.
  • There is a discussion about the terms "well-defined" and "holds," with some participants emphasizing that these do not necessarily mean the same thing.
  • A participant quotes a paragraph from a textbook that defines cardinality and the conditions for comparing cardinal numbers, which adds context to the discussion.

Areas of Agreement / Disagreement

Participants generally agree that the proof presented is correct under the definition of cardinality, and it applies to both finite and infinite sets. However, there is some uncertainty regarding the implications of the definitions and whether they assume finiteness.

Contextual Notes

Some participants note that the theorem discussed is presented as an exercise in a textbook, which may imply certain assumptions about the sets involved. There is also mention of the need for clarity in definitions when discussing cardinality.

Who May Find This Useful

This discussion may be useful for students and educators in mathematics, particularly those studying set theory and cardinality, as well as anyone interested in the foundational aspects of mathematical proofs.

A.Magnus
Messages
138
Reaction score
0
I am working on a proof problem and I would love to know if my proof goes through:

If $A, B$ are sets and if $A \subseteq B$, prove that $|A| \le |B|$.​

Proof:
(a) By definition of subset or equal, if $x \in A$ then $x \in B$. However the converse statement if $x \in B$ then $x \in A$ is not always well defined.
(b) Therefore the identity function $f: A \rightarrow B$ defined by $f(x) = x$ is only an injection. Hence by theorem on the textbook, $|A| \le |B|$.

Thank you for your time and gracious helps. ~MA
 
Physics news on Phys.org
MaryAnn said:
If $A, B$ are sets and if $A \subseteq B$, prove that $|A| \le |B|$.​
On infinite sets this is the definition of $|A|\le|B|$ because you can't express the number of elements in $A$ and $B$ as numbers in order to compare them. Does this theorem presuppose that $A$ and $B$ are finite?

MaryAnn said:
(a) By definition of subset or equal, if $x \in A$ then $x \in B$. However the converse statement if $x \in B$ then $x \in A$ is not always well defined.
It is well defined, but does not necessarily hold. However, in a proof one does not usually write things that are not necessarily true.

MaryAnn said:
(b) Therefore the identity function $f: A \rightarrow B$ defined by $f(x) = x$ is only an injection. Hence by theorem on the textbook, $|A| \le |B|$.
If $f$ were a surjection as well, would it prevent applying this theorem? Again, you don't have to write things that may be true but probably aren't.

And what is this theorem from the textbook?
 
Evgeny.Makarov said:
On infinite sets this is the definition of $|A|\le|B|$ because you can't express the number of elements in $A$ and $B$ as numbers in order to compare them. Does this theorem presuppose that $A$ and $B$ are finite?

The problem is actually a theorem that the textbook assigns as exercise. It is under the chapter section titled "The Ordering of Cardinality." I believe you are right, the paragraphs above this theorem make lots of reference that both $A, B$ are finite sets.

Evgeny.Makarov said:
It is well defined, but does not necessarily hold. However, in a proof one does not usually write things that are not necessarily true.

If $f$ were a surjection as well, would it prevent applying this theorem? Again, you don't have to write things that may be true but probably aren't.

Thank you. Just to recap what you said: The term "well-defined" and "holds" do not necessarily mean the same thing.

Evgeny.Makarov said:
And what is this theorem from the textbook?

Here is a paragraph quoted from the textbook under Definition: (Not Theorem as I had thought - sorry. The textbook is Stephen R. Lay's Analysis with An Introduction to Proof, 5th ed, 2014, Pearson Education Inc.)

We denote the cardinal number of a set $S$ by $|S|$, so that we have $|S| = |T|$ iff $S$ and $T$ are equinumerous. That is, $|S| = |T|$ iff there exists a bijection $f: S \rightarrow T$. In light of our discussion above, we define $|S| \leq |T$| to mean that there exists an injection $f: S \rightarrow T$.

Thank you again for your time and gracious helps. ~MA
 
With this definition your proof in post #1 is basically correct: if $A\subseteq B$, then $f:A\to B$ defined by $f(x)=x$ is an injection, which means $|A|\le|B|$ by definition. This applies to both finite and infinite sets.
 
Evgeny.Makarov said:
With this definition your proof in post #1 is basically correct: if $A\subseteq B$, then $f:A\to B$ defined by $f(x)=x$ is an injection, which means $|A|\le|B|$ by definition. This applies to both finite and infinite sets.

Thank you! Phew! Finally I got one proof right. ~ MA
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
10K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
5K