Inertia tensor around principal Axes part 2

Click For Summary
The discussion focuses on calculating the inertia tensor component \(I_{23}\) for a homogeneous density distribution. The integral for \(I_{23}\) is derived using transformations involving trigonometric functions, ultimately leading to the conclusion that \(I_{23} = 0\). The user then explores the equality of the terms in the integrals for \(I_{22}\) and \(I_{33}\) by applying trigonometric identities. They express gratitude for assistance received, indicating progress in demonstrating that \(I_{22} = I_{33}\). The conversation highlights the mathematical intricacies involved in deriving the inertia tensor around principal axes.
Lambda96
Messages
233
Reaction score
77
Homework Statement
I need to calculate the inertia tensor again around a principal axes showing the following ##I_{23}=0## and ##I_{22}=I_{33}##.
Relevant Equations
none
Hi,

it's about the task e)

Bildschirmfoto 2022-12-12 um 15.25.21.png

Since the density is homogeneous, I have assumed the following for ##\rho=\frac{M}{V}##.

I then started the proof of ##I_{23}##, the integral looks like this:

$$ I_{23}=\int_{}^{} -\frac{M}{V}r'_2r'_3 d^3r$$

Now I apply the transformation

$$ I_{23}=\int_{}^{} -\frac{M}{V}\Bigl(r_2cos\theta+r_3sin\theta)\Bigr)\cdot \Bigl(-r_2sin\theta + r_3cos\theta \Bigr) \ d^3r$$
$$ I_{23}=\int_{}^{} -\frac{M}{V}\Bigl(cos\theta sin\theta(r_3^2-r_2^2)+r_2r_3cos{2\theta})\Bigr) \ d^3r$$

Now I just used the clue, so ##\frac{1}{2\pi} \int_{0}^{2\pi} I_{23} d\theta ##

$$I_{23}=\int_{}^{} \frac{1}{2\pi} \int_{0}^{2\pi} -\frac{M}{V}\Bigl(cos\theta sin\theta(r_3^2-r_2^2)+r_2r_3cos{2\theta})\Bigr) \ d\theta d^3r $$
$$ I_{23}=\int_{}^{} 0 d^3r=0$$With ##I_{22}=I_{33}## I proceeded as follows

$$ \int_{}^{} \frac{M}{V}{r'}_1^2+{r'}_3^2 d^3r $$
$$ \int_{}^{} \frac{M}{V}{r'}_1^2+{r'}_2^2 d^3r $$

Then I did the transformation,

$$ \int_{}^{} \frac{M}{V}\Bigl(r_1^2-r_2^2sin^2\theta-2r_2r_3sin\theta cos\theta + r_3^2cos^2\theta\Bigr) d^3r $$
$$ \int_{}^{} \frac{M}{V}\Bigl(r_1^2+r_2^2cos^2\theta+2r_2r_3sin\theta cos\theta + r_3^2sin^2\theta\Bigr) d^3r $$

Unfortunately, I am now stuck on how to show that the two terms in the integral are equal.
 
Physics news on Phys.org
Use <br /> \begin{split}<br /> \cos^2 \theta &amp;= \tfrac12(1 + \cos 2\theta) \\<br /> \sin^2 \theta &amp;= \tfrac12(1 - \cos 2 \theta) \\<br /> \cos \theta \sin \theta &amp;= \tfrac12 \sin 2\theta \\<br /> \end{split}<br /> and recall that the average of sin or cos over a period is zero.
 
  • Like
Likes Lambda96 and vanhees71
Thanks pasmith for your help 👍, I was now able to show that ##I_{22}=I_{33}##.
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...