Inertia tensor around principal Axes part 2

Lambda96
Messages
233
Reaction score
77
Homework Statement
I need to calculate the inertia tensor again around a principal axes showing the following ##I_{23}=0## and ##I_{22}=I_{33}##.
Relevant Equations
none
Hi,

it's about the task e)

Bildschirmfoto 2022-12-12 um 15.25.21.png

Since the density is homogeneous, I have assumed the following for ##\rho=\frac{M}{V}##.

I then started the proof of ##I_{23}##, the integral looks like this:

$$ I_{23}=\int_{}^{} -\frac{M}{V}r'_2r'_3 d^3r$$

Now I apply the transformation

$$ I_{23}=\int_{}^{} -\frac{M}{V}\Bigl(r_2cos\theta+r_3sin\theta)\Bigr)\cdot \Bigl(-r_2sin\theta + r_3cos\theta \Bigr) \ d^3r$$
$$ I_{23}=\int_{}^{} -\frac{M}{V}\Bigl(cos\theta sin\theta(r_3^2-r_2^2)+r_2r_3cos{2\theta})\Bigr) \ d^3r$$

Now I just used the clue, so ##\frac{1}{2\pi} \int_{0}^{2\pi} I_{23} d\theta ##

$$I_{23}=\int_{}^{} \frac{1}{2\pi} \int_{0}^{2\pi} -\frac{M}{V}\Bigl(cos\theta sin\theta(r_3^2-r_2^2)+r_2r_3cos{2\theta})\Bigr) \ d\theta d^3r $$
$$ I_{23}=\int_{}^{} 0 d^3r=0$$With ##I_{22}=I_{33}## I proceeded as follows

$$ \int_{}^{} \frac{M}{V}{r'}_1^2+{r'}_3^2 d^3r $$
$$ \int_{}^{} \frac{M}{V}{r'}_1^2+{r'}_2^2 d^3r $$

Then I did the transformation,

$$ \int_{}^{} \frac{M}{V}\Bigl(r_1^2-r_2^2sin^2\theta-2r_2r_3sin\theta cos\theta + r_3^2cos^2\theta\Bigr) d^3r $$
$$ \int_{}^{} \frac{M}{V}\Bigl(r_1^2+r_2^2cos^2\theta+2r_2r_3sin\theta cos\theta + r_3^2sin^2\theta\Bigr) d^3r $$

Unfortunately, I am now stuck on how to show that the two terms in the integral are equal.
 
Physics news on Phys.org
Use <br /> \begin{split}<br /> \cos^2 \theta &amp;= \tfrac12(1 + \cos 2\theta) \\<br /> \sin^2 \theta &amp;= \tfrac12(1 - \cos 2 \theta) \\<br /> \cos \theta \sin \theta &amp;= \tfrac12 \sin 2\theta \\<br /> \end{split}<br /> and recall that the average of sin or cos over a period is zero.
 
  • Like
Likes Lambda96 and vanhees71
Thanks pasmith for your help 👍, I was now able to show that ##I_{22}=I_{33}##.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top