DivGradCurl
- 364
- 0
\textrm{(a) A sequence}\left\{ a_n \right\} \textrm{is defined recursively by the equation} a_n = \frac{1}{2} \left( a_{n-1} + a_{n-2} \right) \textrm{for} n \geq 3 \textrm{, where} a_1 \textrm{and} a_2 \textrm{can be any real numbers. Experiment with various values of} a_1 \textrm{and} a_2 \textrm{and use your calculator to guess the limit of the sequence.}
\hline
\textrm{Here is what I've got:}
a_1 = 1 \qquad a_2 = 3 \qquad \Longrightarrow a_n = 2.\overline{3}
a_1 = 7 \qquad a_2 = 16 \qquad \Longrightarrow a_n = 13
a_1 = -3 \qquad a_2 = 48 \qquad \Longrightarrow a_n = 31
a_1 = 0 \qquad a_2 = 1 \qquad \Longrightarrow a_n = 0.\overline{6}
a_1 = 0.3 \qquad a_2 = 0.98 \qquad \Longrightarrow a_n = 0.75\overline{3}
a_1 = 4 \qquad a_2 = 6 \qquad \Longrightarrow a_n = 5.\overline{3}
\textrm{Is that it? I'm not so sure about that.}
\hline
\textrm{(b) Express} \lim _{n \to \infty} a_n \textrm{in terms of} a_1 \textrm{and} a_2 \textrm{by expressing} a_{n-1} - a_n \textrm{in terms of} a_2 - a_1 \textrm{and summing a series.}
\hline
\textrm{Since I've had some difficulty finding a common pattern, I don't even have a clue!}
\hline
\textrm{Thanks!}
\hline
\textrm{Here is what I've got:}
a_1 = 1 \qquad a_2 = 3 \qquad \Longrightarrow a_n = 2.\overline{3}
a_1 = 7 \qquad a_2 = 16 \qquad \Longrightarrow a_n = 13
a_1 = -3 \qquad a_2 = 48 \qquad \Longrightarrow a_n = 31
a_1 = 0 \qquad a_2 = 1 \qquad \Longrightarrow a_n = 0.\overline{6}
a_1 = 0.3 \qquad a_2 = 0.98 \qquad \Longrightarrow a_n = 0.75\overline{3}
a_1 = 4 \qquad a_2 = 6 \qquad \Longrightarrow a_n = 5.\overline{3}
\textrm{Is that it? I'm not so sure about that.}
\hline
\textrm{(b) Express} \lim _{n \to \infty} a_n \textrm{in terms of} a_1 \textrm{and} a_2 \textrm{by expressing} a_{n-1} - a_n \textrm{in terms of} a_2 - a_1 \textrm{and summing a series.}
\hline
\textrm{Since I've had some difficulty finding a common pattern, I don't even have a clue!}
\hline
\textrm{Thanks!}
