Andrew Hamilton wrote a bit about this, I'm not sure how clear it is. It isn't a peer reviewed paper, but Hamilton has written some peer reviewed papers.
<link to source>
The small white dot indicates our point of entry through the horizon. Remarkably, the Schwarzschild surface, the red grid, still appears to stand off at some distance ahead of us. The white dot is actually a line which extends from us to the Schwarzschild surface still ahead, though we only ever see it as a dot, not as a line. The dot-line marks the formation of the Schwarzschild bubble (see below), and our entry into that bubble. Persons who fell through the Schwarzschild surface at this precise point before us would lie arrayed along this dot-line. At this instant, as we pass through the horizon into the Schwarzschild bubble, we see all the other persons who passed through this location before us also pass through the horizon into the bubble.
The main web pages for Hamilton start at https://jila.colorado.edu/hamilton/black-holes/research-black-holes, which will take you to the older web page (where this excerpt I quoted is from), and also a newer web page that I haven't looked at much.
I' d like to rephrase some of these ideas a bit differently. Suppose you were in a space ship, and you were watching the bow as the ship crossed the event horizon. At the instant the bow of the ship entered the black hole, a light flashes in the bow. What would you see in the stern of the ship?
You would see the flash as normal, at least for a reasonably size ship. I suppose it's likely that if you had a very, very long ship, , you might see some distortions of the image and red-shifting due to tidal forces. I haven't seen anybody describe the details of this.
What would be happening from the Schwarzschild perpsective, though, is that the flash of light would be trapped at the horizon, you would catch up to it and the flash of light would hit your eye at exactly the instant your eye reached the horizon. Your brain would process the images as usual, and through the usual mechanics of perception you'd perceive the flash. The process by which your brain processes the visual input from your eye takes time of course, but that starts to get into biology , rather than physics.