##\int\frac{2x+6}{(x-1)(x+1)^2} dx## ?

  • Thread starter Thread starter Byeonggon Lee
  • Start date Start date
  • Tags Tags
    Calculus Dx
Click For Summary
SUMMARY

The discussion focuses on solving the integral ##\int \frac{2x+6}{(x-1)(x+1)^2} dx## using partial fraction decomposition, a technique essential for integrating rational functions. The user initially attempted substitution but found it complicated and ineffective. The correct approach involves expressing the integrand as ##\frac{a}{x-1} + \frac{b}{x+1} + \frac{c}{(x+1)^2##, leading to the solution ##2\ln|x-1|-2\ln|x+1|+\frac{2}{x+1}+C##. The discussion emphasizes the importance of recognizing the need for a complete decomposition when dealing with repeated factors.

PREREQUISITES
  • Understanding of integral calculus, specifically integration techniques.
  • Familiarity with partial fraction decomposition methods.
  • Knowledge of polynomial functions and their properties.
  • Ability to solve systems of linear equations.
NEXT STEPS
  • Study the method of partial fraction decomposition in detail.
  • Practice solving integrals involving repeated linear factors.
  • Explore resources on polynomial long division as a precursor to partial fractions.
  • Review examples of integrals that require advanced techniques beyond substitution.
USEFUL FOR

Students and educators in calculus, particularly those focusing on integration techniques, as well as anyone seeking to deepen their understanding of rational function integration.

Byeonggon Lee
Messages
14
Reaction score
2
Hi I'm currently doing 'integral by substitution' part in a book.

Although it is integral by substitution part, some exercises are solved using reduction of fraction and integral, without substitution.

(Actually I can't solve some exercises if I use substitution and the book's explanation also doesn't use substitution)

By the way I'm stuck with this exercise:

##\int \frac{2x+6}{(x-1)(x+1)^2} dx##

I tried to use substitution but that makes the problem more complicated and I can't also use reduction of fraction.

So I looked up the book's explanation, the book solved this problem in a weird way :

##
\frac{2x+6}{(x-1)(x+1)^2}
= \frac{a}{x-1} + \frac{b}{x+1} + \frac{c}{(x+1)^2}
=\frac{a(x+1)^2+b(x-1)(x+1)+c(x-1)}{(x-1)(x+1)^2}
##

##
2x+6 = (a+b)x^2+(2a+c)x+a-b-c
##

##
a+b=0, 2a+c=2, a-b-c=6
##

##
a=2,b=-2,c=-2
##

##
\int \frac{2x+6}{(x-1)(x+1)^2} dx = \int (\frac{2}{x-1}-\frac{2}{x+1}-\frac{2}{(x+1)^2})dx
##

##
=2\ln|x-1|-2\ln|x+1|+\frac{2}{x+1}+C
##

The book didn't introduced technique like this.
And I feel unnatural and not intuitive about its process because..
Who would imagine to split the expression

##
\frac{2x+6}{(x-1)(x+1)^2}
##

into

##
\frac{a}{x-1} + \frac{b}{x+1} + \frac{c}{(x+1)^2}
##

I can't even use only a, b instead of a, b, c:

##
\frac{2x+6}{(x-1)(x+1)^2} = \frac{a}{x-1}+\frac{b}{x+1}=\frac{a(x+1)^2+b(x^2-1)}{(x-1)(x+1)^2}=\frac{(a+b)x^2+2ax+a-b}{(x-1)(x+1)^2}
##

##
a+b=0, 2a=2,a-b=6
##

And that is contradiction 'a' should be 1 because 2a=2
and b should be -5 because a-b=6
but that doesn't make a+b=0

I don't know why this doesn't work.

So my question is

1. why last thing (use only a, b instead of a, b, c) doesn't work?

2. How can I think this way immediately when I see an exercise like this? Is this technique frequently used?? and how can I think to split the expression into exactly a,b,c, not a, b
split the expression
##
\frac{2x+6}{(x-1)(x+1)^2}
##
into
##
\frac{a}{x-1} + \frac{b}{x+1} + \frac{c}{(x+1)^2}
##

Thanks for reading.
 
Physics news on Phys.org
The technique you mention is called partial fraction decomposition.
It is very useful when you try to find primitives of functions that have the form of a fraction of polynomials.
It greatly simplifies the search, breaking a complicated expression, for which a primitive is not easily accessible, into a sum of expressions for which it is usually much simpler to find a primitive.
You should get familiar with this subject that requires some training.
 
Thanks for replying !

My book also introduced partial fraction decomposition which is
##\frac{1}{AB} =\frac{1}{B-A}(\frac{1}{A}-\frac{1}{B})##

But this following expression is so complicated that I can't apply partial fraction decomposition.
##\frac{2x+6}{(x−1)(x+1)^2}##

Could you explain to me how to apply it?
 
No this is a particular case of partial fraction decomposition. And it could be an incomplete decomposition depending of A and B.
I cannot give you a decent explanation in a few lines, you should study it though it will take you out of your current focus (it can be time consuming at first).
There are some links on this subject (Wikipedia, purplemaths, even some videos on youtube) with detailed examples.
Maybe you should finish your homework, then study fraction decomposition, and go back to this problem.
 
Byeonggon Lee said:
Thanks for replying !

My book also introduced partial fraction decomposition which is
##\frac{1}{AB} =\frac{1}{B-A}(\frac{1}{A}-\frac{1}{B})##

But this following expression is so complicated that I can't apply partial fraction decomposition.
##\frac{2x+6}{(x−1)(x+1)^2}##

Could you explain to me how to apply it?

There are two equivalent partial-fraction expansions of the function
f(x) = \frac{1}{(x+a)(x+b)^2},
namely,
\begin{array}{rl}<br /> 1: &amp; f(x) = \frac{A_1}{x+a} + \frac{B_1 x + C_1}{(x+b)^2} \\<br /> 2: &amp; f(x) = \frac{A_2}{(x+a)} + \frac{B_2}{(x+b)} + \frac{C_2}{(x+b)^2}<br /> \end{array} <br />
Here, ##A_1, B_1, C_1## and/or ##A_2, B_2, C_2## are constants. If you Google "partial fractions" you will see several articles that show you exactly how the ##A,B,C## can be obtained.

You might think about why forms 1 and 2 above are equivalent.

Do not worry about the fact that you might not have been able to "discover" such things on your own. All that matters is that somebody else discovered them long ago and that they are well-known and well-documented.
 
Byeonggon Lee said:
By the way I'm stuck with this exercise:

##\int \frac{2x+6}{(x-1)(x+1)^2} dx##

I tried to use substitution but that makes the problem more complicated and I can't also use reduction of fraction.
Why not? The most natural approach to this problem would be partial fraction decomposition. I don't think there is a substitution that would work.
Byeonggon Lee said:
So I looked up the book's explanation, the book solved this problem in a weird way :

##
\frac{2x+6}{(x-1)(x+1)^2}
= \frac{a}{x-1} + \frac{b}{x+1} + \frac{c}{(x+1)^2}
=\frac{a(x+1)^2+b(x-1)(x+1)+c(x-1)}{(x-1)(x+1)^2}
##

##
2x+6 = (a+b)x^2+(2a+c)x+a-b-c
##

##
a+b=0, 2a+c=2, a-b-c=6
##

##
a=2,b=-2,c=-2
##

##
\int \frac{2x+6}{(x-1)(x+1)^2} dx = \int (\frac{2}{x-1}-\frac{2}{x+1}-\frac{2}{(x+1)^2})dx
##

##
=2\ln|x-1|-2\ln|x+1|+\frac{2}{x+1}+C
##

The book didn't introduced technique like this.
I have a hard time believing this. They used partial fraction decomposition, so unless your book is extremely disorganized, they should have discussed this technique in the section where this problem appears.
Byeonggon Lee said:
And I feel unnatural and not intuitive about its process because..
Who would imagine to split the expression

##
\frac{2x+6}{(x-1)(x+1)^2}
##

into

##
\frac{a}{x-1} + \frac{b}{x+1} + \frac{c}{(x+1)^2}
##

I can't even use only a, b instead of a, b, c:
This is because you have a repeated linear factor, ##(x + 1)^2##. Since you don't have it in your work below, you get a set of numbers that is incorrect.
Byeonggon Lee said:
##
\frac{2x+6}{(x-1)(x+1)^2} = \frac{a}{x-1}+\frac{b}{x+1}=\frac{a(x+1)^2+b(x^2-1)}{(x-1)(x+1)^2}=\frac{(a+b)x^2+2ax+a-b}{(x-1)(x+1)^2}
##

##
a+b=0, 2a=2,a-b=6
##

And that is contradiction 'a' should be 1 because 2a=2
and b should be -5 because a-b=6
but that doesn't make a+b=0

I don't know why this doesn't work.

So my question is

1. why last thing (use only a, b instead of a, b, c) doesn't work?

2. How can I think this way immediately when I see an exercise like this? Is this technique frequently used?? and how can I think to split the expression into exactly a,b,c, not a, b
 
The last numerator should be in the form c+dx, although d=0 in this case.
Partial fraction is indeed a technique very frequently used and I believe any elementary calculus textbook will introduce it.
 
momoko said:
The last numerator should be in the form c+dx, although d=0 in this case.
You should read what Ray said in post #5.
 
Mark44 said:
unless your book is extremely disorganized, they should have discussed this technique in the section where this problem appears.
Unfortunately my book seems extremely disorganized ... no details about this. Only this theorem
Byeonggon Lee said:
1AB=1B−A(1A−1B)\frac{1}{AB} =\frac{1}{B-A}(\frac{1}{A}-\frac{1}{B})
exists in the corner of a page.

geoffrey159 said:
There are some links on this subject (Wikipedia, purplemaths, even some videos on youtube) with detailed examples
Ray Vickson said:
1:2:f(x)=A1x+a+B1x+C1(x+b)2f(x)=A2(x+a)+B2(x+b)+C2(x+b)2

Thanks I read the article in purple math, and see some videos in youtube.
 
  • #10
If you can't plug and chug values into the partial fraction variables, use row reduction for an n x m matrix.
 

Similar threads

Replies
3
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K