MHB Integrable Function on $[0,1]$: Proving a Limit

  • Thread starter Thread starter Krizalid1
  • Start date Start date
  • Tags Tags
    Function Limit
AI Thread Summary
For any integrable function on the interval [0,1], it is proven that the limit of the expression involving the sum and integral converges to the integral of (1-x)f(x) over [0,1]. The proof involves manipulating the sum by expressing n-k as a sum and reversing the order of summation. By defining F(x) as the integral of f from 0 to x, the limit is shown to approach zero as n approaches infinity. The Riemann sum converges to the integral of F(x), and integrating by parts confirms the relationship between the limits and the integral of (1-x)f(x). Thus, the limit is established as equal to the desired integral.
Krizalid1
Messages
106
Reaction score
0
For any integrable function on $[0,1]$ prove that $\displaystyle \mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\limits_{k = 0}^{n - 1} {(n - k)\int_{\frac{k}{n}}^{\frac{{k + 1}}{n}} {f(x)\,dx} } = \int_0^1 {(1 - x)f(x)\,dx} .$
 
Mathematics news on Phys.org
This one is pretty tricky, so write $n-k$ as a sum and reverse the order of the sums.
 
Krizalid said:
This one is pretty tricky, so write $n-k$ as a sum and reverse the order of the sums.

i couldn't imagine ,how to solve this
 
Give it a try! It's a nice problem!
 
Krizalid said:
For any integrable function on $[0,1]$ prove that $\displaystyle \mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\limits_{k = 0}^{n - 1} {(n - k)\int_{\frac{k}{n}}^{\frac{{k + 1}}{n}} {f(x)\,dx} } = \int_0^1 {(1 - x)f(x)\,dx} .$
[sp]Let $$F(x) = \int_0^xf(t)\,dt.$$ Then $$\frac{1}{n}\sum_{k = 0}^{n - 1} (n - k)\int_{k/n}^{(k+1)/n}\!\!\! f(x)\,dx = \frac1n \sum_{k = 0}^{n - 1} (n-k)\bigl(F(\tfrac{k+1}n\bigr) - F\bigl(\tfrac kn\bigr)\bigr) = \frac1n \sum_{k = 0}^{n - 1} (n-k)F(\tfrac{k+1}n\bigr) - \frac1n \sum_{k = 0}^{n - 1}(n-k) F\bigl(\tfrac kn\bigr).$$ The first of those two sums is $$\sum_{j = 0}^{n - 1} (n-j)F(\tfrac{j+1}n\bigr) = \sum_{k=1}^{n} (n-k+1)F(\tfrac{k}n\bigr) = F(1) - F(0) + \sum_{k=0}^{n-1} (n-k+1)F(\tfrac{k}n\bigr)$$ (first writing $j$ instead of $k$, and then letting $k=j+1$). Therefore $$\begin{aligned}\frac{1}{n}\sum_{k = 0}^{n - 1} (n - k)\int_{k/n}^{(k+1)/n}\!\!\! f(x)\,dx &= \frac1n\Bigl(F(1) - F(0) + \sum_{k=0}^{n-1} (n-k+1)F(\tfrac{k}n\bigr)\Bigr) - \frac1n \sum_{k = 0}^{n - 1}(n-k) F\bigl(\tfrac kn\bigr) \\ &= \frac{F(1)}n + \frac1n\sum_{k=0}^{n-1}F(\tfrac{k}n\bigr).\end{aligned}$$ As $n\to\infty$, $F(1)/n\to0$ and the Riemann sum $$\frac1n\sum_{k=0}^{n-1}F(\tfrac{k}n\bigr)$$ converges to $$\int_0^1F(x)\,dx.$$ But (integrating by parts) $$\int_0^1 {(1 - x)f(x)\,dx} = \Bigl[(1-x)F(x)\Bigr]_0^1 + \int_0^1F(x)\,dx = \int_0^1F(x)\,dx.$$ Put those results together to see that $$\lim_{n\to\infty}\frac1n \sum_{k=0}^n (n-k) \int_{k/n}^{(k+1)/n}\!\!\!f(x)\,dx = \int_0^1(1-x)f(x)\,dx.$$[/sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top