- #1
nicnicman
- 136
- 0
Homework Statement
[itex]\int[/itex][itex]\frac{dx}{\sqrt{e^{x} + 1}}[/itex]
Homework Equations
Using u-substitution
The Attempt at a Solution
Let u = [itex]\sqrt{e^{x} + 1}[/itex] [itex]\Rightarrow[/itex] u[itex]^{2} - 1[/itex] = e[itex]^{x}[/itex]
Then, du = [itex]\frac{e^{x} dx}{2\sqrt{e^{x} + 1}}[/itex] [itex]\Rightarrow[/itex] dx = [itex]\frac{2u du}{u^{2}-1}[/itex]
So, [itex]\int[/itex][itex]\frac{dx}{\sqrt{e^{x} + 1}}[/itex] = [itex]\int[/itex][itex]\frac{2u du}{u(u^{2}-1)}[/itex]
But, I'm stuck at this point. I think I want to break it up into two simpler integrals, but I'm not sure how to do this. Any suggestions would be greatly appreciated!