Integral of 1/(a sin^2 x + b sin x cos x + c cos^2 x)

  • Thread starter Thread starter Entertainment Unit
  • Start date Start date
  • Tags Tags
    Cos Integral Sin
Click For Summary
SUMMARY

The integral $$\int \frac {dx} {a~\sin^2~x + b~\sin~x~\cos~x + c~\cos^2~x}$$ can be evaluated using the substitution $$u = \tan x$$, transforming it into $$\int \frac {du} {au^2 + bu + c}$$. The evaluation depends on the discriminant $$b^2 - 4ac$$, which leads to three cases: when it is positive, zero, or negative. For positive discriminant, the solution involves logarithmic functions, while for zero, it simplifies to a rational function. When the discriminant is negative, the integral can be expressed in terms of arctangent functions.

PREREQUISITES
  • Understanding of integral calculus and substitution methods
  • Familiarity with trigonometric identities and transformations
  • Knowledge of quadratic equations and their discriminants
  • Experience with logarithmic and arctangent functions
NEXT STEPS
  • Study the properties of the discriminant in quadratic equations
  • Learn about integral evaluation techniques for rational functions
  • Explore the Weierstrass substitution method in depth
  • Review standard integral tables for forms involving quadratic denominators
USEFUL FOR

Mathematics students, calculus instructors, and anyone interested in advanced integration techniques, particularly those dealing with trigonometric integrals and quadratic forms.

Entertainment Unit
Messages
16
Reaction score
1

Homework Statement


If ##a \neq 0##, evaluate the integral

$$\int \frac {dx} {a~\sin^2~x + b~\sin~x~\cos~x + c~\cos^2~x}$$

(Hint: Make the substitution ##u = \tan x## and consider separately the cases where
##b^2 - 4ac## is positive, zero, or negative.)

The Attempt at a Solution


$$\int \frac {dx} {a~\sin^2~x + b~\sin~x~\cos~x + c~\cos^2~x}$$

$$\int \frac {\sec^2~x} {\sec^2~x} \frac {dx} {a~\sin^2~x + b~\sin~x~\cos~x + c~\cos^2~x}$$

$$\int \frac {\sec^2~x~dx} {a~\tan^2~x + b~\tan~x + c}$$

Let ##u = \tan~x \Rightarrow dx = \frac {du} {\sec^2~x}##

$$\int \frac {sec^2~x} {au^2 + bu + c} \frac {du} {\sec^2~x}$$

$$\begin{equation} \tag{1} \int \frac {du} {au^2 + bu + c} \end{equation}$$

$$\frac 1 a \int \frac {du} {u^2 + \frac b a u + \frac c a}$$

$$\frac 1 a \int \frac {du} {u^2 + \frac b a u + \left( \frac b {2a} \right)^2 - \left(\frac b {2a} \right)^2 + \frac c a}$$

$$\frac 1 a \int \frac {du} { \left (u + \frac b {2a} \right)^2 - \frac {b^2 - 4ac} {(2a)^2}}$$

$$\frac 1 a \int \frac {du} { \left(u + \frac b {2a} \right)^2 - \left (\frac {\sqrt {b^2 - 4ac}} {2a} \right)^2}$$

$$\frac 1 a \frac 1 {\frac {2 \sqrt {b^2 - 4ac} } {2a}} \ln \left| \frac {u + \frac b {2a} - \frac {\sqrt {b^2 - 4ac}} {2a}} {u + \frac b {2a} + \frac {\sqrt {b^2 - 4ac}} {2a}} \right| + C$$

$$\frac 1 {\sqrt {b^2 - 4ac}} \ln \left| \frac {u + \frac {b - \sqrt {b^2 - 4ac}} {2a}} {u + \frac {b + \sqrt {b^2 - 4ac}} {2a}} \right| + C$$

$$\frac 1 {\sqrt {b^2 - 4ac}} \ln \left| \frac {\tan x + \frac {b - \sqrt {b^2 - 4ac}} {2a}} {\tan x + \frac {b + \sqrt {b^2 - 4ac}} {2a}} \right| + C$$

where ##b^2 - 4ac## is positive which agrees with the answers I obtained with online calculators (wolframalpha and integral-calculator.)

In the case where ##b^2 - 4ac = 0##, we have ##c = \frac {b^2} {4a}##. Substituting c in (1), we have

$$\int \frac {du} {au^2 + bu + \frac {b^2} {4a}}$$

$$\frac 1 a \int \frac {du} {u^2 + \frac b a u + \frac {b^2} {4a^2}}$$

$$\frac 1 a \int \frac {du} {u^2 + \frac b a u + \left( \frac b {2a} \right)^2}$$

$$\frac 1 a \int \frac {du} {\left( u + \frac b {2a} \right)^2}$$

Let ##v = u + \frac b {2a} \Rightarrow du = dv##

$$\frac 1 a \int \frac {dv} {v^2}$$

$$\frac {-1} {av} + D$$

$$\frac {-1} {a \left( u + \frac b {2a} \right)} + D$$

$$\frac {-2} {2au + b} + D$$

$$\frac {-2} {2a \tan x + b} + D$$

Is my solution for when ##b^2 - 4ac = 0## correct?

How do I go about evaluating the integral when ##b^2 - 4ac < 0##? Looking at (1), the denominator can't be factored in this case. Trying Weiserstrass substitution didn't seem to work but maybe I didn't persist long enough.

Any feedback on my form or how I went about evaluating the integral would be appreciated.
 
Physics news on Phys.org
When ## b^2-4ac <0 ##, I believe you have the equivalent of ## \int \frac{1}{x^2+1} \, dx=\tan^{-1}{x}+C ##.
:welcome:
 
Entertainment Unit said:

Homework Statement


If ##a \neq 0##, evaluate the integral

$$\int \frac {dx} {a~\sin^2~x + b~\sin~x~\cos~x + c~\cos^2~x}$$

(Hint: Make the substitution ##u = \tan x## and consider separately the cases where
##b^2 - 4ac## is positive, zero, or negative.)

The Attempt at a Solution


How do I go about evaluating the integral when ##b^2 - 4ac < 0##? Looking at (1), the denominator can't be factored in this case. Trying Weiserstrass substitution didn't seem to work but maybe I didn't persist long enough.

Any feedback on my form or how I went about evaluating the integral would be appreciated.

Let ##k = b/(2a)##. If ##(b^2-4ac)>0,## let ##A = \sqrt{b^2-4ac}/(2a)##, so (assuming ##a>0##) your integral is
$$\int \frac{du}{(u+k)^2 - A^2}$$
with ##A > 0.##
If ##(b^2-4ac) < 0,## let ##B = \sqrt{4ac - b^2}/(2a),## so (again, assuming ##a>0##) your integral is
$$\int \frac{du}{(u+k)^2 + B^2}$$
with ##B > 0.##

Both of these are standard, and can be found in integral tables, etc. Or, you can do them manually.
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 27 ·
Replies
27
Views
4K
Replies
6
Views
2K