Integral of absolute value of a Fourier transform

Click For Summary
The discussion revolves around calculating the integral of the absolute value of a Fourier transform, specifically the expression $$\int_0^{f_c+f_m} |Y(f)|^2\, df$$ where $$Y(f)$$ is defined using delta functions. Participants clarify the application of the Dirac delta function and its properties, emphasizing that the integral's limits must be correctly set to avoid yielding zero. The conversation also addresses the need for a solution proportional to $$\Big|\sum_{l=1}^L \sqrt{g_l}e^{j 2 \pi (f_c + f_m)\tau_l} \Big|^2$$ and discusses the implications of the derived expressions. Ultimately, the thread seeks to identify any errors in the calculations and confirm the correctness of the approach taken.
Mik256
Messages
5
Reaction score
0

Homework Statement


Hi guys,

I am going to calculate the following integral:
$$\int_0^{f_c+f_m} |Y(f)|^2\, df$$ where:$$Y(f)=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) + e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \right ] $$

with ##\omega_0= 2\pi (f_c + f_m), \ \ \alpha_m=constant, \ \ f_c,f_m: frequencies, \ \ \theta_m: initial \ phase ##.

2. Homework Equations
Then, the integral weare looking for will get the following form:

$$ \int_0^{f_c+f_m} |Y(f)|^2 df= \int_o^{f_c + f_m} (\pi \alpha_m)^2 \Big|\sum_{l=1}^L \sqrt{g_l}e^{-j \omega \tau_l} \Big|^2 cos^2[2 \pi (f_c + f_m) + \theta_m]df =\\
(\pi \alpha_m)^2\int_0^{f_c+f_m} \sum_{l=1}^L g_l e^{-2j \omega \tau_l} \Big[cos^2[2 \pi (f_c + f_m) + \theta_m]\Big]df =\\
(\pi \alpha_m)^2 \Big(\sum_{l=1}^L g_l e^{-j2(2\pi) \tau_l}\Big) \Big[cos^2[2 \pi (f_c + f_m) +\theta_m] \Big] \int_0^{f_c+f_m}e^f df $$[/B]

The Attempt at a Solution



Using a delta's Dirac property: ##\delta(\omega - \omega_0)f(\omega)= f(\omega - \omega_0)## (please correct me if it is wrong, because I have doubts about it), I got:$$Y(f)=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j[(\omega - \omega_0 )\tau_l - \theta_m)]} + e^{-j[(\omega - \omega_0) \tau_l + \theta_m)]} \right ] =\\
=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l} e^{-j \omega \tau_l} \left [ e^{j(\omega_0\tau_l + \theta_m)} + e^{-j( \omega_0 \tau_l + \theta_m)]} \right ] =\\
=(\pi \alpha_m) \Big(\sum_{l=1}^{L} \sqrt{g_l} e^{-j \omega \tau_l} \Big) cos [2 \pi (f_c + f_m)\tau_l + \theta_m]$$

So, finally:

$$ |Y(f)|^2=(\pi \alpha_m)^2 \Big|\sum_{l=1}^L \sqrt{g_l}e^{-j \omega \tau_l} \Big|^2 cos^2[2 \pi (f_c + f_m) + \theta_m]$$.Being ## \int_0^{f_c+f_m}e^f df = e^{f_c+f_m} - 1\approx e^{f_c+f_m} ##, then:$$\int_0^{f_c+f_m} |Y(f)|^2 df= (\pi \alpha_m)^2 \Big(\sum_{l=1}^L g_l e^{-j4 \pi (f_c + f_m) \tau_l}\Big) \Big[cos^2[2 \pi (f_c + f_m) +\theta_m] \Big]$$

My supervisor told me I am supposed to find a solution proportional to: ##\Big|\sum_{l=1}^L \sqrt{g_l}e^{j 2 \pi (f_c + f_m)\tau_l} \Big|^2##.

Could you please help me to find the right solution and where the error is?

Thank you so much for your help, I would really appreciate that![/B]
 
Physics news on Phys.org
Mik256 said:
##\delta(\omega-\omega_0)f(\omega)=f(\omega)##
This is not correct, it should be ##\int_0^{\infty} d\omega \delta(\omega-\omega_0)f(\omega)=f(\omega_0)##
Are you sure that the upper limit should be ##f_c+f_m##?
Because in that case both the delta function will give zero.
 
eys_physics said:
This is not correct, it should be ##\int_0^{\infty} d\omega \delta(\omega-\omega_0)f(\omega)=f(\omega_0)##
Are you sure that the upper limit should be ##f_c+f_m##?
Because in that case both the delta function will give zero.

Yes I am sure about it. Could you briefly explain me why I will get zero?

And, if you had an idea to solve it, would you be so kind to sketch me a solution?

Thanks for your help!
 
The statement I gave concerning the delta function in my previous post. The way to treat the delta function is to use (see https://math.stackexchange.com/questions/342743/delta-dirac-function-integral) :
##\delta(x)=1/(2\pi)\sum_{n=-\infty}^{\infty} e^{inx}##
and thus

##\delta(\omega-\omega_0)=1/(2\pi)\sum_{n=-\infty}^{\infty} e^{in(\omega-\omega_0)},##
##\delta(\omega+\omega_0)=1/(2\pi)\sum_{n=-\infty}^{\infty} e^{in(\omega+\omega_0)}.##

I cannot give you the complete solution according to the rules of this forum. But, if you need more help please tell where at the derivation you are stuck.
 
Alright, this is my attempt of solution:

$$ Y(f)=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) + e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \right ] $$

$$ \int_0^{f_c+f_m} |Y(f)|^2df= \Big(\frac{\pi}{2} \alpha_m\Big)^2 \int_0^{f_c+f_m} \Big| \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) + e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \right ] \Big|^2 df = $$

$$= \Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \int_0^{f_c+f_m} \left [ \Big( e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) \Big)^2 + \Big( e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \Big)^2 +\underbrace{2 \Big| e^{-j(\omega \tau_l - \theta_m)} e^{-j(\omega \tau_l + \theta_m)}\delta(\omega - \omega_0)\delta(\omega + \omega_0)}_{=0} \Big| \right ] df $$

The last term is equal to zero because I have the multiplication of 2 delta; then:

$$ \int_0^{f_c+f_m} |Y(f)|^2df = \Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \Big[ \int_0^{f_c+f_m} \Big( e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0)\Big)^2 df + \int_0^{f_c+f_m} \Big(e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \Big) ^2 df \Big] = $$

$$\Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \Big[ \Big|e^{-j(\omega_0 \tau_l - \theta_m)} \Big|^2 + \Big| e^{j(\omega_0 \tau_l - \theta_m)} \Big|^2 \Big] $$

Finally: $$ \int_0^{f_c+f_m} |Y(f)|^2df= \Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \Big( \Big|e^{-j(2 \pi (f_c+f_m) \tau_l - \theta_m)} \Big|^2 + \Big| e^{j(2 \pi (f_c+f_m) \tau_l - \theta_m)} \Big|^2 \Big) $$

Could it be the right solution or is there anything wrong?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K