MHB Integral of Exponential Fractions with Positive Parameters

AI Thread Summary
The discussion focuses on evaluating the integral of a specific exponential fraction with positive parameters a, b, and c. The integral is shown to equal the expression involving logarithmic terms and the difference between parameters a and b. Participants discuss different methods for finding the constant of integration, with suggestions to simplify the evaluation by letting a equal b. One contributor mentions using the exponential integral's expansion for evaluation, while another suggests differentiating with respect to b for clarity. The conversation emphasizes the importance of clear evaluations and alternative approaches to solving the integral.
polygamma
Messages
227
Reaction score
0
Show that for positive parameters $a$, $b$, and $c$,

$$ \int_{0}^{\infty} \left( \frac{e^{-ax}-e^{-bx}}{x^{2}} + (a-b) \frac{e^{-cx}}{x} \ \right) \ dx = b-a + a \ln \left(\frac{a}{c} \right) - b \ln \left(\frac{b}{c} \right)$$
 
Mathematics news on Phys.org
[sp]

$$ F = \int_{0}^{\infty} \left( \frac{e^{-ax}-e^{-bx}}{x^{2}} + (a-b) \frac{e^{-cx}}{x} \ \right) \ dx$$

$$F_a =\int_{0}^{\infty} \frac{e^{-cx}-e^{-ax}}{x}\ dx = \ln \left( \frac{a}{c}\right) $$

$$F= a \ln \left( \frac{a}{c}\right) - a + C $$

$$F_b = C_b$$

$$F_b = \int_{0}^{\infty} \frac{e^{-bx}-e^{-cx}}{x} dx = -\ln \left( \frac{b}{c}\right)$$

We have $$C_b = -\ln \left( \frac{b}{c}\right)$$ so

$$C = -b\ln \left( \frac{b}{c}\right)+b$$

$$F = b-a +a \ln \left( \frac{a}{c}\right)-b\ln \left( \frac{b}{c}\right)$$

[/sp]
 
@ Zaid

I actually didn't even consider differentiating inside of the integral.

I took the boring approach of finding an antiderivative in terms of the exponential integral and then using the expansion of the exponential integral at $x=0$ to evaluate the antiderivative at the lower limit.

There is one thing about your evaluation that I'm not sure about, though.

When you integrated to find the constant $C$, how did you know that he constant of integration was zero?

Alternatively what you could do to find $C$ is to let $a=b$ in the original integral.
 
Random Variable said:
There is one thing about your evaluation that I'm not sure about, though.

When you integrated to find the constant $C$, how did you know that he constant of integration was zero?

Alternatively what you could do to find $C$ is to let $a=b$ in the original integral.

Yeah, I made the evaluations not clear but I actually considered that $C$ as a function of $b$ so I differentiated with respect to $b$. Again putting $a=b$ is by far much clearer.

Can you post your approach ?
 
It's easier to work the upper incomplete gamma function.

\Gamma(0,a x) = -\text{Ei}(- ax) = \int_{ax}^{\infty} \frac{e^{-t}}{t} \ dt = \int_{x}^{\infty} \frac{e^{-au}}{u} \ duLet's first derive the expansion at $x=0$.

$$ \Gamma(0,x) = \int_{x}^{\infty} \frac{e^{-t}}{t} \ dt = \int_{1}^{\infty} \frac{e^{-t}}{t} \ dt - \int_{1}^{x} \frac{e^{-t}}{t} \ dt $$

$$ = \int_{1}^{x} \frac{1-e^{-t}}{t} \ dt - \ln x + \int_{1}^{\infty} \frac{e^{-t}}{t} \ dt$$

$$= -\ln x + \Big( -\int_{0}^{1} \frac{1-e^{-t}}{t} \ dt + \int_{1}^{\infty} \frac{e^{-t}}{t} \ dt \Big) + \int_{0}^{x} \frac{1-e^{-t}}{t} \ dt$$

$$ = - \ln x - \gamma - \int_{0}^{x} \frac{e^{-t}-1}{t} \ dt$$

$$ = - \ln x - \gamma \int_{0}^{x} \Big(-1 + \frac{t}{2} - \frac{t^{2}}{6} + \ldots \Big) \ dt$$

$$ = - \ln x - \gamma + x + \mathcal{O}(x^{2}) $$And it's not really needed here, but one can find an asymptotic expansion at $x= \infty$ by integrating by parts.

$$ \Gamma(0,x) \sim \frac{e^{-x}}{x} + \mathcal{O}\left( \frac{e^{-x}}{x^{2}} \right) \ \ x \to \infty$$Then

$$ \int \left( \frac{e^{-ax}-e^{-bx}}{x^{2}} + (a-b) \frac{e^{-cx}}{x} \ \right) \ dx = \int \frac{e^{-ax}-e^{-bx}}{x^{2}} \ dx + (a-b) \int \frac{e^{-cx}}{x} \ dx$$

$$ = -\frac{e^{-ax} -e^{-bx}}{x} + \int \frac{-ae^{-ax}+be^{-bx}}{x} \ dx -(a-b) \Gamma(0,cx)$$

$$ = \frac{e^{-bx} -e^{-ax}}{x} + a \Gamma(0,ax) - b \Gamma(0,bx) - (a-b) \Gamma(0,cx)+C$$$$ \int^{\infty}_{0} \left( \frac{e^{-ax}-e^{-bx}}{x^{2}} + (a-b) \frac{e^{-cx}}{x} \ \right) \ dx$$

$$ = 0 - \lim_{x \to 0} \left[ \frac{e^{-bx} -e^{-ax}}{x} + a \left(-\ln ax - \gamma \right) - b \left(-\ln bx - \gamma \right) -(a-b) \left(-\ln cx - \gamma \right) \right]$$

$$= - \lim_{x \to 0} \left[ \frac{e^{-bx} -e^{-ax}}{x} - a \ln \left(\frac{a}{c} \right) + b \left(\frac{b}{c} \right) \right]$$

$$ = b-a + a \ln \left(\frac{a}{c} \right) - b \ln \left(\frac{b}{c} \right) $$
 
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top