Integral of Exponential Fractions with Positive Parameters

Click For Summary

Discussion Overview

The discussion focuses on evaluating the integral of a specific expression involving exponential fractions with positive parameters \(a\), \(b\), and \(c\). The scope includes mathematical reasoning and exploration of different methods for solving the integral.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Technical explanation

Main Points Raised

  • Post 1 presents the integral to be evaluated and proposes a specific result involving logarithmic terms.
  • Post 2 details a step-by-step evaluation of the integral, introducing constants and relationships between the parameters.
  • Post 3 questions the method used to determine the constant of integration \(C\) and suggests an alternative approach by setting \(a=b\) to clarify the evaluation.
  • Post 4 reiterates the uncertainty regarding the determination of the constant \(C\) and emphasizes the clarity of the alternative approach suggested.
  • Post 5 proposes using the upper incomplete gamma function as a potentially simpler method for evaluation.

Areas of Agreement / Disagreement

Participants express differing methods for evaluating the integral, with no consensus on the best approach or the determination of the constant of integration. Multiple competing views remain regarding the evaluation techniques.

Contextual Notes

There is uncertainty regarding the assumptions made in determining the constant of integration and the implications of setting parameters equal. The discussion does not resolve these uncertainties.

polygamma
Messages
227
Reaction score
0
Show that for positive parameters $a$, $b$, and $c$,

$$ \int_{0}^{\infty} \left( \frac{e^{-ax}-e^{-bx}}{x^{2}} + (a-b) \frac{e^{-cx}}{x} \ \right) \ dx = b-a + a \ln \left(\frac{a}{c} \right) - b \ln \left(\frac{b}{c} \right)$$
 
Physics news on Phys.org
[sp]

$$ F = \int_{0}^{\infty} \left( \frac{e^{-ax}-e^{-bx}}{x^{2}} + (a-b) \frac{e^{-cx}}{x} \ \right) \ dx$$

$$F_a =\int_{0}^{\infty} \frac{e^{-cx}-e^{-ax}}{x}\ dx = \ln \left( \frac{a}{c}\right) $$

$$F= a \ln \left( \frac{a}{c}\right) - a + C $$

$$F_b = C_b$$

$$F_b = \int_{0}^{\infty} \frac{e^{-bx}-e^{-cx}}{x} dx = -\ln \left( \frac{b}{c}\right)$$

We have $$C_b = -\ln \left( \frac{b}{c}\right)$$ so

$$C = -b\ln \left( \frac{b}{c}\right)+b$$

$$F = b-a +a \ln \left( \frac{a}{c}\right)-b\ln \left( \frac{b}{c}\right)$$

[/sp]
 
@ Zaid

I actually didn't even consider differentiating inside of the integral.

I took the boring approach of finding an antiderivative in terms of the exponential integral and then using the expansion of the exponential integral at $x=0$ to evaluate the antiderivative at the lower limit.

There is one thing about your evaluation that I'm not sure about, though.

When you integrated to find the constant $C$, how did you know that he constant of integration was zero?

Alternatively what you could do to find $C$ is to let $a=b$ in the original integral.
 
Random Variable said:
There is one thing about your evaluation that I'm not sure about, though.

When you integrated to find the constant $C$, how did you know that he constant of integration was zero?

Alternatively what you could do to find $C$ is to let $a=b$ in the original integral.

Yeah, I made the evaluations not clear but I actually considered that $C$ as a function of $b$ so I differentiated with respect to $b$. Again putting $a=b$ is by far much clearer.

Can you post your approach ?
 
It's easier to work the upper incomplete gamma function.

\Gamma(0,a x) = -\text{Ei}(- ax) = \int_{ax}^{\infty} \frac{e^{-t}}{t} \ dt = \int_{x}^{\infty} \frac{e^{-au}}{u} \ duLet's first derive the expansion at $x=0$.

$$ \Gamma(0,x) = \int_{x}^{\infty} \frac{e^{-t}}{t} \ dt = \int_{1}^{\infty} \frac{e^{-t}}{t} \ dt - \int_{1}^{x} \frac{e^{-t}}{t} \ dt $$

$$ = \int_{1}^{x} \frac{1-e^{-t}}{t} \ dt - \ln x + \int_{1}^{\infty} \frac{e^{-t}}{t} \ dt$$

$$= -\ln x + \Big( -\int_{0}^{1} \frac{1-e^{-t}}{t} \ dt + \int_{1}^{\infty} \frac{e^{-t}}{t} \ dt \Big) + \int_{0}^{x} \frac{1-e^{-t}}{t} \ dt$$

$$ = - \ln x - \gamma - \int_{0}^{x} \frac{e^{-t}-1}{t} \ dt$$

$$ = - \ln x - \gamma \int_{0}^{x} \Big(-1 + \frac{t}{2} - \frac{t^{2}}{6} + \ldots \Big) \ dt$$

$$ = - \ln x - \gamma + x + \mathcal{O}(x^{2}) $$And it's not really needed here, but one can find an asymptotic expansion at $x= \infty$ by integrating by parts.

$$ \Gamma(0,x) \sim \frac{e^{-x}}{x} + \mathcal{O}\left( \frac{e^{-x}}{x^{2}} \right) \ \ x \to \infty$$Then

$$ \int \left( \frac{e^{-ax}-e^{-bx}}{x^{2}} + (a-b) \frac{e^{-cx}}{x} \ \right) \ dx = \int \frac{e^{-ax}-e^{-bx}}{x^{2}} \ dx + (a-b) \int \frac{e^{-cx}}{x} \ dx$$

$$ = -\frac{e^{-ax} -e^{-bx}}{x} + \int \frac{-ae^{-ax}+be^{-bx}}{x} \ dx -(a-b) \Gamma(0,cx)$$

$$ = \frac{e^{-bx} -e^{-ax}}{x} + a \Gamma(0,ax) - b \Gamma(0,bx) - (a-b) \Gamma(0,cx)+C$$$$ \int^{\infty}_{0} \left( \frac{e^{-ax}-e^{-bx}}{x^{2}} + (a-b) \frac{e^{-cx}}{x} \ \right) \ dx$$

$$ = 0 - \lim_{x \to 0} \left[ \frac{e^{-bx} -e^{-ax}}{x} + a \left(-\ln ax - \gamma \right) - b \left(-\ln bx - \gamma \right) -(a-b) \left(-\ln cx - \gamma \right) \right]$$

$$= - \lim_{x \to 0} \left[ \frac{e^{-bx} -e^{-ax}}{x} - a \ln \left(\frac{a}{c} \right) + b \left(\frac{b}{c} \right) \right]$$

$$ = b-a + a \ln \left(\frac{a}{c} \right) - b \ln \left(\frac{b}{c} \right) $$
 
Last edited by a moderator:

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K