DryRun
Gold Member
- 837
- 4
Homework Statement
\int^4_3 \frac{1}{\sqrt{3x^2-6x+1}}\,.dx
The attempt at a solution
I complete the square for the quadratic:
\sqrt{3x^2-6x+1}<br /> \\=\sqrt{3(x^2-2x+\frac{1}{3})}<br /> \\=\sqrt 3 \times \sqrt{(x-1)^2-\frac{2}{3}}
\int^4_3 \frac{1}{\sqrt{3x^2-6x+1}}\,.dx<br /> \\=\frac{1}{\sqrt 3}\int^4_3 \frac{1}{\sqrt{(x-1)^2-\frac{2}{3}}}\,.dx<br /> \\=\frac{1}{\sqrt 3} \left[\cosh^{-1}\frac{\sqrt 3(x-1)}{\sqrt 2}\right]^{x=4}_{x=3}<br /> \\=\frac{1}{\sqrt 3} \left[\cosh^{-1}\frac{3\sqrt 3}{\sqrt 2}-\cosh^{-1}\sqrt 6\right]
I already simplified it but it doesn't agree with the final answer:
\frac{1}{\sqrt 3}\ln \left(\frac{15+\sqrt {219}}{12+\sqrt {138}}\right)
\int^4_3 \frac{1}{\sqrt{3x^2-6x+1}}\,.dx
The attempt at a solution
I complete the square for the quadratic:
\sqrt{3x^2-6x+1}<br /> \\=\sqrt{3(x^2-2x+\frac{1}{3})}<br /> \\=\sqrt 3 \times \sqrt{(x-1)^2-\frac{2}{3}}
\int^4_3 \frac{1}{\sqrt{3x^2-6x+1}}\,.dx<br /> \\=\frac{1}{\sqrt 3}\int^4_3 \frac{1}{\sqrt{(x-1)^2-\frac{2}{3}}}\,.dx<br /> \\=\frac{1}{\sqrt 3} \left[\cosh^{-1}\frac{\sqrt 3(x-1)}{\sqrt 2}\right]^{x=4}_{x=3}<br /> \\=\frac{1}{\sqrt 3} \left[\cosh^{-1}\frac{3\sqrt 3}{\sqrt 2}-\cosh^{-1}\sqrt 6\right]
I already simplified it but it doesn't agree with the final answer:
\frac{1}{\sqrt 3}\ln \left(\frac{15+\sqrt {219}}{12+\sqrt {138}}\right)