Integral of sqrt(1+x^2)/x: Help Solving w/ Trig Substitution

Click For Summary
SUMMARY

The integral of \(\frac{\sqrt{1+x^2}}{x}\) can be effectively solved using trigonometric substitution, specifically with \(x = \tan(\theta)\). This substitution leads to the integral \(\int \csc(\theta) \sec^2(\theta) \, d\theta\), which simplifies to \(\sec(\theta) + \ln|\csc(\theta) - \cot(\theta)| + C\). After back-substituting for \(\theta\), the final result is \(\sqrt{1+x^2} + \ln\left|\frac{\sqrt{1+x^2}-1}{x}\right| + C\).

PREREQUISITES
  • Understanding of trigonometric identities, particularly Pythagorean identities.
  • Familiarity with integration techniques, including substitution and integration by parts.
  • Knowledge of hyperbolic functions and their properties.
  • Ability to manipulate logarithmic expressions in calculus.
NEXT STEPS
  • Study the application of trigonometric substitution in integrals, focusing on problems involving \(\sqrt{a^2 + x^2}\).
  • Learn about hyperbolic functions and their integration techniques, specifically \(\sinh(t)\) and \(\cosh(t)\).
  • Explore advanced integration techniques such as partial fractions and their applications in solving integrals.
  • Practice solving integrals involving logarithmic functions and their properties in calculus.
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus and integral calculus, as well as educators looking for effective methods to teach integration techniques.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Integral of sqrt(1+x^2)/x using trigonometric substitution?


Hi, I keep getting the answer wrong on this problem, and I was wondering if someone could please help me figure out how to solve it? I understand the basic concept, and I know that x=tan(θ), but I'm having trouble figuring out what trig identities to use. Thank you for your help!

I have posted a link there to this question so the OP can view my work.
 
Physics news on Phys.org
Hello KTRavenclaw,

We are given to integrate:

$$\int\frac{\sqrt{1+x^2}}{x}\,dx$$

I agree with your choice of substitution:

$$x=\tan(\theta)\,\therefore\,dx= \sec^2(\theta)\,d\theta$$

Using the Pythagorean identity $$\tan^2(u)+1=\sec^2(u)$$ we obtain:

$$\int\frac{\sec^3(\theta)}{\tan(\theta)}\, d\theta=\int\csc(\theta)\sec^2(\theta) \,d\theta$$

Using the above mentioned Pythagorean identity, we may write:

$$\int\csc(\theta)\left(\tan^2(\theta)+1 \right) \,d\theta=\int \sec(\theta)\tan(\theta)+\frac{1}{\sin(\theta)}\, d\theta$$

Now, using the following:

$$\frac{d}{du}\left(\sec(u) \right)=\sec(u)\tan(u)$$

$$\sin(2u)=2\sin(u)\cos(u)$$

We may write the integral as:

$$\int\,d\left(\sec(\theta) \right)+\frac{1}{2}\int\frac{1}{ \sin\left(\frac{\theta}{2} \right) \cos\left(\frac{\theta}{2} \right)}$$

If we multiply the second integrand by $$1=\frac{\sec^2\left(\frac{\theta}{2} \right)}{\sec^2\left(\frac{\theta}{2} \right)}$$ and put the constant with the numerator of the integrand, we obtain:

$$\int\,d\left(\sec(\theta) \right)+\int\frac{\dfrac{1}{2}\sec^2\left( \frac{\theta}{2} \right)}{\tan\left(\frac{\theta}{2} \right)}\, d\theta$$

Now, for the second integral, apply the substitution:

$$u=\tan\left(\frac{\theta}{2} \right)\,\therefore\,du=\frac{1}{2}\sec^2\left( \frac{\theta}{2} \right)\, d\theta$$

Thus, we now have:

$$\int\,d\left(\sec(\theta) \right)+\int\frac{1}{u}\,du$$

And so using the rules of integration, we obtain:

$$\sec(\theta)+\ln|u|+C$$

Back-substitute for $u$:

$$\sec(\theta)+\ln\left|\tan\left(\frac{\theta}{2} \right) \right|+C$$

Using the half-angle identity for tangent:

$$\tan\left(\frac{u}{2} \right)=\csc(u)-\cot(u)$$ we have:

$$\sec(\theta)+\ln\left|\csc(\theta)-\cot(\theta) \right|+C$$

Back-substitute for $\theta$:

$$\sqrt{1+x^2}+\ln\left|\frac{\sqrt{1+x^2}-1}{x} \right|+C$$

And so we may conclude:

$$\int\frac{\sqrt{1+x^2}}{x}\,dx= \sqrt{1+x^2}+\ln\left|\frac{\sqrt{1+x^2}-1}{x} \right|+C$$
 
MarkFL said:
Using the Pythagorean identity $$\tan^2(u)+1=\sec^2(u)$$ we obtain:

$$\int\frac{\sec^3(\theta)}{\tan(\theta)}\, d\theta=\int\csc(\theta)\sec^2(\theta) \,d\theta$$

I'm not sure how you make this step. Is this just a simple trig identity?
 
tmt said:
I'm not sure how you make this step. Is this just a simple trig identity?

Think of the tangent function like this:

$$\tan(u)=\frac{\sin(u)}{\cos(u)}=\sin(u)\sec(u)$$
 
In my opinion a more straightforward substitution is $\displaystyle \begin{align*} x = \sinh{(t)} \implies \mathrm{d}x = \cosh{(t)}\,\mathrm{d}t \end{align*}$, giving

$\displaystyle \begin{align*} \int{ \frac{\sqrt{1 + x^2}}{x}\,\mathrm{d}x} &= \int{ \frac{\sqrt{1 + \sinh^2{(t)}}}{\sinh{(t)}}\,\cosh{(t)}\,\mathrm{d}t } \\ &= \int{ \frac{\cosh^2{(t)}}{\sinh{(t)}}\,\mathrm{d}t } \\ &= \int{ \frac{1 + \sinh^2{(t)}}{\sinh{(t)}}\,\mathrm{d}t } \\ &= \int{ \left[ \frac{1}{\sinh{(t)}} + \sinh{(t)} \right] \,\mathrm{d}t } \\ &= \int{ \frac{\sinh{(t)}}{\sinh^2{(t)}}\,\mathrm{d}t } + \int{ \sinh{(t)}\,\mathrm{d}t } \\ &= \int{ \frac{\sinh{(t)}}{\cosh^2{(t)} - 1} \,\mathrm{d}t } + \cosh{(t)} + C_1 \\ &= \int{ \frac{\sinh{(t)}}{\left[ \cosh{(t)} - 1 \right] \left[ \cosh{(t)} + 1 \right] } \,\mathrm{d}t } + \cosh{(t)} + C_1 \end{align*}$

You can solve that resulting integral with $\displaystyle \begin{align*} u = \cosh{(t)} \implies \mathrm{d}u = \sinh{(t)} \,\mathrm{d}t \end{align*}$ giving $\displaystyle \begin{align*} \int{\frac{1}{\left( u - 1 \right) \left( u + 1 \right) } \,\mathrm{d}u } + \cosh{(t)} + C_1 \end{align*}$.

Apply Partial Fractions

$\displaystyle \begin{align*} \frac{A}{u - 1} + \frac{B}{u + 1} &\equiv \frac{1}{ \left( u - 1 \right) \left( u + 1 \right) } \\ A\,\left( u + 1 \right) + B \,\left( u - 1 \right) &\equiv 1 \end{align*}$

Let $\displaystyle \begin{align*} u = -1 \end{align*}$ to find $\displaystyle \begin{align*} -2\,A = 1 \implies A = -\frac{1}{2} \end{align*}$.

Let $\displaystyle \begin{align*} u = 1 \end{align*}$ to find $\displaystyle \begin{align*} 2\,B = 1 \implies B = \frac{1}{2} \end{align*}$. Then the integral is

$\displaystyle \begin{align*} \int{ \left[ -\frac{1}{2}\,\left( \frac{1}{u - 1} \right) + \frac{1}{2}\,\left( \frac{1}{u + 1} \right) \right] \,\mathrm{d}u } + \cosh{(t)} + C_1 &= \frac{1}{2} \int{ \left( \frac{1}{u + 1} - \frac{1}{u - 1} \right) \,\mathrm{d}u } + \cosh{(t)} + C_1 \\ &= \frac{1}{2} \,\left( \ln{ \left| u + 1 \right| } - \ln{ \left| u - 1 \right| } \right) + C_2 + \cosh{(t)} + C_1 \\ &= \frac{1}{2} \ln{ \left| \frac{u + 1}{u - 1} \right| } + \cosh{(t)} + C \textrm{ where } C = C_2 + C_1 \\ &= \frac{1}{2}\ln{ \left| \frac{\cosh{(t)} + 1}{\cosh{(t)} - 1 } \right| } + \sqrt{ 1 + \sinh^2{(t)} } + C \\ &= \frac{1}{2}\ln{ \left| \frac{\left[ \cosh{(t)} + 1 \right] ^2}{\left[ \cosh{(t)} - 1 \right] \left[ \cosh{(t)} + 1 \right] } \right| } + \sqrt{1 + x^2} + C \\ &= \frac{1}{2}\ln{ \left| \frac{\cosh^2{(t)} + 2\cosh{(t)} + 1}{\cosh^2{(t)} - 1 } \right| } + \sqrt{1 + x^2} + C \\ &= \frac{1}{2}\ln{ \left| \frac{1 + \sinh^2{(t)} + 2\,\sqrt{ 1 + \sinh^2{(t)}} + 1}{\sinh^2{(t)}} \right| } + \sqrt{1 + x^2} + C \\ &= \frac{1}{2}\ln{ \left| \frac{2 + x^2 + 2\,\sqrt{1 + x^2}}{x^2} \right| } + \sqrt{1 + x^2} + C \end{align*}$
 
\displaystyle\int \frac{\sqrt{1+x^2}}{x}\,dx
\text{Let }\,x = \tan\theta,\; dx = \sec^2\!\theta\,d\theta

\text{Substitute: }\;\int \frac{\sec\theta}{\tan\theta}\,\sec^2\theta\,d\theta \;=\;\int\frac{\sec^3\theta}{\tan\theta}\,d\theta \;=\;\int\frac{1}{\cos^3\theta}\,\frac{\cos\theta}{\sin\theta}\,d\theta \;=\;\int\frac{d\theta}{\sin\theta\cos^2\theta}

. . =\;\int \frac{\sec^2\theta}{\sin\theta}\,d\theta \;=\; <br /> \int \frac{1}{\sin\theta} (\tan^2\theta +1)\,d\theta \;=\; \int\left(\frac{\sin\theta}{\cos^2\theta} + \frac{1}{\sin\theta}\right)\,d\theta

. . =\;\int (\sec\theta\tan\theta + \csc\theta)\,d\theta \;=\; \sec\theta + \ln|\csc\theta - \cot\theta| + C\text{Back-substitute: }\;\sqrt{1+x^2} + \ln\left|\frac{\sqrt{1+x^2} - 1}{x}\right| + C
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K