Integral of sqrt(1+x^2)/x: Help Solving w/ Trig Substitution

Click For Summary

Discussion Overview

The discussion revolves around solving the integral of sqrt(1+x^2)/x using trigonometric substitution. Participants explore various substitution methods and identities, sharing their approaches and reasoning while seeking clarification on specific steps in the integration process.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests using the substitution x=tan(θ) and discusses the resulting integral involving secant and tangent functions.
  • Another participant proposes an alternative substitution, x=sinh(t), and outlines a different approach to the integral, leading to a series of transformations and partial fractions.
  • Several participants express confusion about specific steps, particularly regarding the application of trigonometric identities and the manipulation of integrals.
  • One participant questions the validity of a step involving the transformation of the integral into a form with csc(θ) and sec^2(θ).
  • Another participant elaborates on the relationship between tangent and sine/cosine functions to clarify the substitution process.

Areas of Agreement / Disagreement

Participants do not reach a consensus on a single method for solving the integral. Multiple competing views and approaches are presented, with some participants favoring trigonometric substitution while others advocate for hyperbolic substitution.

Contextual Notes

Some steps in the integration process remain unresolved, and participants express uncertainty about the correctness of certain transformations and identities used in their calculations.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Integral of sqrt(1+x^2)/x using trigonometric substitution?


Hi, I keep getting the answer wrong on this problem, and I was wondering if someone could please help me figure out how to solve it? I understand the basic concept, and I know that x=tan(θ), but I'm having trouble figuring out what trig identities to use. Thank you for your help!

I have posted a link there to this question so the OP can view my work.
 
Physics news on Phys.org
Hello KTRavenclaw,

We are given to integrate:

$$\int\frac{\sqrt{1+x^2}}{x}\,dx$$

I agree with your choice of substitution:

$$x=\tan(\theta)\,\therefore\,dx= \sec^2(\theta)\,d\theta$$

Using the Pythagorean identity $$\tan^2(u)+1=\sec^2(u)$$ we obtain:

$$\int\frac{\sec^3(\theta)}{\tan(\theta)}\, d\theta=\int\csc(\theta)\sec^2(\theta) \,d\theta$$

Using the above mentioned Pythagorean identity, we may write:

$$\int\csc(\theta)\left(\tan^2(\theta)+1 \right) \,d\theta=\int \sec(\theta)\tan(\theta)+\frac{1}{\sin(\theta)}\, d\theta$$

Now, using the following:

$$\frac{d}{du}\left(\sec(u) \right)=\sec(u)\tan(u)$$

$$\sin(2u)=2\sin(u)\cos(u)$$

We may write the integral as:

$$\int\,d\left(\sec(\theta) \right)+\frac{1}{2}\int\frac{1}{ \sin\left(\frac{\theta}{2} \right) \cos\left(\frac{\theta}{2} \right)}$$

If we multiply the second integrand by $$1=\frac{\sec^2\left(\frac{\theta}{2} \right)}{\sec^2\left(\frac{\theta}{2} \right)}$$ and put the constant with the numerator of the integrand, we obtain:

$$\int\,d\left(\sec(\theta) \right)+\int\frac{\dfrac{1}{2}\sec^2\left( \frac{\theta}{2} \right)}{\tan\left(\frac{\theta}{2} \right)}\, d\theta$$

Now, for the second integral, apply the substitution:

$$u=\tan\left(\frac{\theta}{2} \right)\,\therefore\,du=\frac{1}{2}\sec^2\left( \frac{\theta}{2} \right)\, d\theta$$

Thus, we now have:

$$\int\,d\left(\sec(\theta) \right)+\int\frac{1}{u}\,du$$

And so using the rules of integration, we obtain:

$$\sec(\theta)+\ln|u|+C$$

Back-substitute for $u$:

$$\sec(\theta)+\ln\left|\tan\left(\frac{\theta}{2} \right) \right|+C$$

Using the half-angle identity for tangent:

$$\tan\left(\frac{u}{2} \right)=\csc(u)-\cot(u)$$ we have:

$$\sec(\theta)+\ln\left|\csc(\theta)-\cot(\theta) \right|+C$$

Back-substitute for $\theta$:

$$\sqrt{1+x^2}+\ln\left|\frac{\sqrt{1+x^2}-1}{x} \right|+C$$

And so we may conclude:

$$\int\frac{\sqrt{1+x^2}}{x}\,dx= \sqrt{1+x^2}+\ln\left|\frac{\sqrt{1+x^2}-1}{x} \right|+C$$
 
MarkFL said:
Using the Pythagorean identity $$\tan^2(u)+1=\sec^2(u)$$ we obtain:

$$\int\frac{\sec^3(\theta)}{\tan(\theta)}\, d\theta=\int\csc(\theta)\sec^2(\theta) \,d\theta$$

I'm not sure how you make this step. Is this just a simple trig identity?
 
tmt said:
I'm not sure how you make this step. Is this just a simple trig identity?

Think of the tangent function like this:

$$\tan(u)=\frac{\sin(u)}{\cos(u)}=\sin(u)\sec(u)$$
 
In my opinion a more straightforward substitution is $\displaystyle \begin{align*} x = \sinh{(t)} \implies \mathrm{d}x = \cosh{(t)}\,\mathrm{d}t \end{align*}$, giving

$\displaystyle \begin{align*} \int{ \frac{\sqrt{1 + x^2}}{x}\,\mathrm{d}x} &= \int{ \frac{\sqrt{1 + \sinh^2{(t)}}}{\sinh{(t)}}\,\cosh{(t)}\,\mathrm{d}t } \\ &= \int{ \frac{\cosh^2{(t)}}{\sinh{(t)}}\,\mathrm{d}t } \\ &= \int{ \frac{1 + \sinh^2{(t)}}{\sinh{(t)}}\,\mathrm{d}t } \\ &= \int{ \left[ \frac{1}{\sinh{(t)}} + \sinh{(t)} \right] \,\mathrm{d}t } \\ &= \int{ \frac{\sinh{(t)}}{\sinh^2{(t)}}\,\mathrm{d}t } + \int{ \sinh{(t)}\,\mathrm{d}t } \\ &= \int{ \frac{\sinh{(t)}}{\cosh^2{(t)} - 1} \,\mathrm{d}t } + \cosh{(t)} + C_1 \\ &= \int{ \frac{\sinh{(t)}}{\left[ \cosh{(t)} - 1 \right] \left[ \cosh{(t)} + 1 \right] } \,\mathrm{d}t } + \cosh{(t)} + C_1 \end{align*}$

You can solve that resulting integral with $\displaystyle \begin{align*} u = \cosh{(t)} \implies \mathrm{d}u = \sinh{(t)} \,\mathrm{d}t \end{align*}$ giving $\displaystyle \begin{align*} \int{\frac{1}{\left( u - 1 \right) \left( u + 1 \right) } \,\mathrm{d}u } + \cosh{(t)} + C_1 \end{align*}$.

Apply Partial Fractions

$\displaystyle \begin{align*} \frac{A}{u - 1} + \frac{B}{u + 1} &\equiv \frac{1}{ \left( u - 1 \right) \left( u + 1 \right) } \\ A\,\left( u + 1 \right) + B \,\left( u - 1 \right) &\equiv 1 \end{align*}$

Let $\displaystyle \begin{align*} u = -1 \end{align*}$ to find $\displaystyle \begin{align*} -2\,A = 1 \implies A = -\frac{1}{2} \end{align*}$.

Let $\displaystyle \begin{align*} u = 1 \end{align*}$ to find $\displaystyle \begin{align*} 2\,B = 1 \implies B = \frac{1}{2} \end{align*}$. Then the integral is

$\displaystyle \begin{align*} \int{ \left[ -\frac{1}{2}\,\left( \frac{1}{u - 1} \right) + \frac{1}{2}\,\left( \frac{1}{u + 1} \right) \right] \,\mathrm{d}u } + \cosh{(t)} + C_1 &= \frac{1}{2} \int{ \left( \frac{1}{u + 1} - \frac{1}{u - 1} \right) \,\mathrm{d}u } + \cosh{(t)} + C_1 \\ &= \frac{1}{2} \,\left( \ln{ \left| u + 1 \right| } - \ln{ \left| u - 1 \right| } \right) + C_2 + \cosh{(t)} + C_1 \\ &= \frac{1}{2} \ln{ \left| \frac{u + 1}{u - 1} \right| } + \cosh{(t)} + C \textrm{ where } C = C_2 + C_1 \\ &= \frac{1}{2}\ln{ \left| \frac{\cosh{(t)} + 1}{\cosh{(t)} - 1 } \right| } + \sqrt{ 1 + \sinh^2{(t)} } + C \\ &= \frac{1}{2}\ln{ \left| \frac{\left[ \cosh{(t)} + 1 \right] ^2}{\left[ \cosh{(t)} - 1 \right] \left[ \cosh{(t)} + 1 \right] } \right| } + \sqrt{1 + x^2} + C \\ &= \frac{1}{2}\ln{ \left| \frac{\cosh^2{(t)} + 2\cosh{(t)} + 1}{\cosh^2{(t)} - 1 } \right| } + \sqrt{1 + x^2} + C \\ &= \frac{1}{2}\ln{ \left| \frac{1 + \sinh^2{(t)} + 2\,\sqrt{ 1 + \sinh^2{(t)}} + 1}{\sinh^2{(t)}} \right| } + \sqrt{1 + x^2} + C \\ &= \frac{1}{2}\ln{ \left| \frac{2 + x^2 + 2\,\sqrt{1 + x^2}}{x^2} \right| } + \sqrt{1 + x^2} + C \end{align*}$
 
\displaystyle\int \frac{\sqrt{1+x^2}}{x}\,dx
\text{Let }\,x = \tan\theta,\; dx = \sec^2\!\theta\,d\theta

\text{Substitute: }\;\int \frac{\sec\theta}{\tan\theta}\,\sec^2\theta\,d\theta \;=\;\int\frac{\sec^3\theta}{\tan\theta}\,d\theta \;=\;\int\frac{1}{\cos^3\theta}\,\frac{\cos\theta}{\sin\theta}\,d\theta \;=\;\int\frac{d\theta}{\sin\theta\cos^2\theta}

. . =\;\int \frac{\sec^2\theta}{\sin\theta}\,d\theta \;=\; <br /> \int \frac{1}{\sin\theta} (\tan^2\theta +1)\,d\theta \;=\; \int\left(\frac{\sin\theta}{\cos^2\theta} + \frac{1}{\sin\theta}\right)\,d\theta

. . =\;\int (\sec\theta\tan\theta + \csc\theta)\,d\theta \;=\; \sec\theta + \ln|\csc\theta - \cot\theta| + C\text{Back-substitute: }\;\sqrt{1+x^2} + \ln\left|\frac{\sqrt{1+x^2} - 1}{x}\right| + C
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K