MHB Integral of trigonometric function

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that if $[a,\,b]\subset \left(0,\,\dfrac{\pi}{2}\right)$, $\displaystyle \int_a^b \sin x\,dx>\sqrt{b^2+1}-\sqrt{1^2+1}$.
 
Mathematics news on Phys.org
anemone said:
Prove that if $[a,\,b]\subset \left(0,\,\dfrac{\pi}{2}\right)$, $\displaystyle \int_a^b \sin x\,dx>\sqrt{b^2+1}-\sqrt{{\color{red}a}^2+1}$.
[TIKZ][scale=3]
\clip (-0.25,-0.25) rectangle (3.5,3.5) ;
\draw (0,0) circle (3cm) ;
\draw [help lines, ->] (-0.5,0) -- (3.25,0) ;
\draw [help lines, ->] (0,-0.5) -- (0,3.25) ;
\coordinate [label=below left:$0$] (O) at (0,0) ;
\coordinate [label=below left:$1$] (I) at (3,0) ;
\coordinate [label=above right:$A$] (A) at (45:3) ;
\coordinate [label=above:$B$] (B) at (3,2.36) ;
\draw [thick, blue] (I) -- node[ right ]{$x$} (B) ;
\draw [thick, red] (3,0) arc (0:45:3cm) ;
\draw (I) -- (O) -- (A) ;
\draw (O) -- (B) ;
\draw [blue] (0.3,0.1) node{$\theta$} ;
\draw [red] (0.55,0.15) node{$x$} ;
\draw [blue] (0.45,0) arc (0:38:0.45cm) ;
\draw [red](0.7,0) arc (0:45:0.7cm) ;[/TIKZ]

If $0 < x < \frac\pi2$ then $x < \tan x$ and so $\arctan x < x$.

In the above diagram, the red arc of the unit circle and the blue vertical line both have length $x$. So the line $0A$ makes an angle $x$ (radians) with the horizontal, and $\theta = \arctan x < x$. Therefore $\dfrac x{\sqrt{x^2+1}} = \sin\theta < \sin x$.

Now integrate from $a$ to $b$, to get $$\int_a^b\!\! \sin x\,dx > \int_a^b\!\!\frac x{\sqrt{x^2+1}\,}dx = \left[\sqrt{x^2+1}\right]_a^b = \sqrt{b^2+1}-\sqrt{a^2+1}.$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top