Integral of (xsin(t))....Two Variables in Single Variable Calc Integral

Click For Summary
The discussion revolves around evaluating the derivative of an integral involving the function x*sin(t) with respect to x. Participants clarify that the correct application of the Fundamental Theorem of Calculus allows for the derivative to be taken outside the integral when x is treated as a constant during integration. The initial confusion about whether x could be treated as a function of t is addressed, confirming that it can be considered a constant for the purpose of integration. The final consensus is that using the product rule in conjunction with the integral is valid, and the inclusion of dt in the integral is essential for clarity. Overall, the approach of applying calculus techniques to solve the problem is validated.
The Head
Messages
137
Reaction score
2
Homework Statement
Evaluate d/dx ∫(limits: 0,x) x*sin(t)
Relevant Equations
d/dx ∫ (0,x) f(t)= f(x)*x'

uv-∫vdu = ∫udv
I was told this problem could simply be solved with calc-1 techniques, so I'm tempted to say we could do d/dx(x∫(limits: 0,x) sin(t) dt. Then it's a simple product rule: d/dx (x) * ∫(0,x) sint dt + x * d/dx(∫ (0,x) sin (t) dt) = 1 - cos(x) + x*sin(x). However, I wonder if we have to allow that x is a function of t and then I would be forbidden from bringing x out of the integral. Is this allowed?

I tried moving the d/dx inside the integral too (∫ d/dx (x*sint) dt = ∫ sint dt + ∫x*d/dx(sint) dt.
∫ sint dt = 1 - cos(x)
∫x*d/dx(sint) dt means integration by parts (not really calc 1).

u=x
du=dx/dt
dv= d/dx(sint)
v =∫ d/dx (sint), but now the variables are getting all screwed up because the integral is with respect to t, but I'm taking d/dx. Was my first approach legal enough?
 
Physics news on Phys.org
The Head said:
Homework Statement:: Evaluate d/dx ∫(limits: 0,x) x*sin(t)
Relevant Equations:: d/dx ∫ (0,x) f(t)= f(x)*x'
Your relevant equation is incorrect. Here's what it should say.
$$\frac d {dx}\int_0^x f(t) dt = f(x)$$
Notice that I have included dt in the integrand, which you don't show in the homework statement. Notice also that x' is not part of the answer.
This equation is a consequence of the first part of the Fundamental Theorem of Calculus.

I'm guessing that the full Homework Statement indicates that you are to evaluate this expression:
$$\frac d {dx}\int_0^x x\sin(t) dt$$
I'm guessing, because your version doesn't indicate which is the variable of integration, so I'm uncertain whether the last thing in the integral should be dt or dx.
The Head said:
uv-∫vdu = ∫udv

I was told this problem could simply be solved with calc-1 techniques, so I'm tempted to say we could do d/dx(x∫(limits: 0,x) sin(t) dt. Then it's a simple product rule: d/dx (x) * ∫(0,x) sint dt + x * d/dx(∫ (0,x) sin (t) dt) = 1 - cos(x) + x*sin(x). However, I wonder if we have to allow that x is a function of t and then I would be forbidden from bringing x out of the integral. Is this allowed?

I tried moving the d/dx inside the integral too (∫ d/dx (x*sint) dt = ∫ sint dt + ∫x*d/dx(sint) dt.
∫ sint dt = 1 - cos(x)
∫x*d/dx(sint) dt means integration by parts (not really calc 1).

u=x
du=dx/dt
dv= d/dx(sint)
v =∫ d/dx (sint), but now the variables are getting all screwed up because the integral is with respect to t, but I'm taking d/dx. Was my first approach legal enough?
 
Mark44 said:
Your relevant equation is incorrect. Here's what it should say.
$$\frac d {dx}\int_0^x f(t) dt = f(x)$$
Notice that I have included dt in the integrand, which you don't show in the homework statement. Notice also that x' is not part of the answer.
This equation is a consequence of the first part of the Fundamental Theorem of Calculus.

I'm guessing that the full Homework Statement indicates that you are to evaluate this expression:
$$\frac d {dx}\int_0^x x\sin(t) dt$$
I'm guessing, because your version doesn't indicate which is the variable of integration, so I'm uncertain whether the last thing in the integral should be dt or dx.

Yes, $$\frac d {dx}\int_0^x x\sin(t) dt$$ is correct. Thanks, apologies on forgetting the dt. Is it OK to then just proceed with $$\frac d {dx}x\int_0^x sin(t) dt$$ and try for the product rule? It doesn't seem to specify if x is a function of t, but given how involved it gets when I don't make this assumption, I feel like this must be allowed.
 
The Head said:
Yes, $$\frac d {dx}\int_0^x x\sin(t) dt$$ is correct. Thanks, apologies on forgetting the dt. Is it OK to then just proceed with $$\frac d {dx}x\int_0^x sin(t) dt$$ and try for the product rule? It doesn't seem to specify if x is a function of t, but given how involved it gets when I don't make this assumption, I feel like this must be allowed.
That seems OK to me. I can't come up with a good reason why it isn't.
If we just look at the integral, it would be
$$\int_{t=0}^{t=x} x\sin(t)dt$$
As far as the integration is concerned, x is just a constant.

BTW, I appreciate you efforts in using LaTeX. It makes things much easier to read.
 
  • Like
Likes The Head
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
Replies
3
Views
1K
Replies
2
Views
2K
Replies
21
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
6K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K