1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Integral using partial fraction

  1. Jul 1, 2010 #1
    1. The problem statement, all variables and given/known data

    I must solve using partial fractions:

    [tex]\displaystyle\int_{}^{}\displaystyle\frac{dx}{8x^3+1}[/tex]

    3. The attempt at a solution

    The only real root for the denominator: [tex]-\displaystyle\frac{1}{2}[/tex]

    Then [tex]8x^3+1=(x+\displaystyle\frac{1}{2})(8x^2-4x+2)[/tex]

    Then I did:

    [tex]\displaystyle\frac{1}{(x+\displaystyle\frac{1}{2})(8x^2-4x+2)}=\displaystyle\frac{A}{(x+\displaystyle\frac{1}{2})}+\displaystyle\frac{Bx+C}{(8x^2-4x+2)}[/tex]

    I constructed the system:

    [tex]A=\displaystyle\frac{1}{6}[/tex] [tex]B=\displaystyle\frac{-4}{3}[/tex] [tex]C=\displaystyle\frac{4}{3}[/tex]

    [tex]\displaystyle\int_{}^{}\displaystyle\frac{dx}{8x^3+1}=\displaystyle\frac{1}{6}\displaystyle\int_{}^{}\displaystyle\frac{dx}{(x+\displaystyle\frac{1}{2})}dx-\displaystyle\frac{4}{3}\displaystyle\int_{}^{}\displaystyle\frac{x-1}{(8x^2-4x+2)}dx[/tex]

    Completing the square [tex]8x^2-4x+2=8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}[/tex]


    [tex]\displaystyle\int_{}^{}\displaystyle\frac{x-1}{(8x^2-4x+2)}dx=\displaystyle\int_{}^{}\displaystyle\frac{x-1}{8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}}dx[/tex]

    [tex]\displaystyle\int_{}^{}\displaystyle\frac{x-1}{8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}}=\displaystyle\int_{}^{}\displaystyle\frac{x}{8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}}dx-\displaystyle\int_{}^{}\displaystyle\frac{1}{8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}}dx[/tex]

    [tex]t=x-\displaystyle\frac{1}{4}\Rightarrow{x=t+\displaystyle\frac{1}{4}}[/tex]
    [tex]dt=dx[/tex]

    [tex]\displaystyle\int_{}^{}\displaystyle\frac{x}{8(x-\displaystyle\frac{1}{4})^2+\displaystyle\frac{3}{2}}dx=\displaystyle\int_{}^{}\displaystyle\frac{t+\displaystyle\frac{1}{4}}{8t^2+\displaystyle\frac{3}{2}}dt=\displaystyle\frac{1}{8}\displaystyle\int_{}^{}\displaystyle\frac{t}{t^2+\displaystyle\frac{3}{2}}dt+\displaystyle\frac{1}{32}\displaystyle\int_{}^{}\displaystyle\frac{dt}{t^2+\displaystyle\frac{3}{2}}[/tex]

    Am I on the right way? Its too tedious. The statement says I must use partial fractions, but anyway if you see a simpler way of solving it let me know.
     
    Last edited: Jul 1, 2010
  2. jcsd
  3. Jul 1, 2010 #2

    Mark44

    Staff: Mentor

    This is the correct approach. You might have made life a little easier on yourself by factoring 8x^3 + 1 into (2x + 1)(4x^2 -2x + 1), thereby eliminating at least some of the fractions.
     
  4. Jul 1, 2010 #3
    Didn't realize of it. Thanks Mark44. Too many fractions really. Its killing me :P
     
  5. Jul 1, 2010 #4
    This is the kind of problem that you shouls do once, for whatever reason (!), and then use a computer for afterward! Good luck. wolframalpha can verify your results, in case you weren't aware of that resource.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook