Integral using trig substitution

Click For Summary
SUMMARY

The integral $$\int \frac{1}{x^2 - 9} \,dx$$ can be evaluated using two methods: trigonometric substitution and partial fraction decomposition. The trigonometric substitution method involves setting $$x = 3 \sec \theta$$, leading to the result $$\frac{1}{3} \ln |\csc \theta - \cot \theta| + C$$. Alternatively, the integral can be simplified using partial fraction decomposition, yielding $$\frac{1}{6} \ln \left| \frac{x-3}{x+3} \right| + C$$. Both methods are valid, but the latter is more straightforward and avoids the complexities of trigonometric functions.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with trigonometric identities
  • Knowledge of partial fraction decomposition
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study trigonometric substitution techniques in integral calculus
  • Learn about partial fraction decomposition in detail
  • Explore the applications of integrals in physics and engineering
  • Practice solving integrals involving rational functions
USEFUL FOR

Students of calculus, mathematics educators, and anyone seeking to improve their skills in evaluating integrals, particularly those involving rational functions and trigonometric substitutions.

tmt1
Messages
230
Reaction score
0
I have this integral:

$$\int_{}^{}\frac{1}{x^2 - 9} \,dx$$

I believe I can use trig substitution with this so I can set $x = 3 sec\theta$

Evaluating this, I get

$$ln|\csc\left({\theta}\right) - \cot\left({\theta}\right)| + C$$

Since $x^2 - 9 = 9sec^2\theta - 9$, then $\frac{x^2 - 9}{3} = tan^2\theta$ and $tan\theta = \sqrt{\frac{x^2 - 9}{3}}$.

Then we know $csc\theta = \frac{sec\theta}{tan\theta}$ and in this context $sec\theta = x / 3$, so $csc\theta = \frac{x / 3}{ \sqrt{\frac{x^2 - 9}{3}}}$.

Thus the answer is

$$ln| \frac{x / 3}{ \sqrt{\frac{x^2 - 9}{3}}} - \sqrt{\frac{3}{x^2 - 9}}| + C$$

Is this correct?
 
Last edited:
Physics news on Phys.org
You can avoid a trig sub:

$$\int\dfrac{1}{x^2-9}\,dx=\dfrac16\int\left(\dfrac{1}{x-3}-\dfrac{1}{x+3}\right)\,dx=\dfrac16\left(\ln|x-3|-\ln|x+3|\right)+C$$

$$=\dfrac16\ln\left|\dfrac{x-3}{x+3}\right|+C$$
 
\int \frac{dx}{x^2-9}
Let x \,=\,3\sec\theta \quad\Rightarrow\quad dx \;=\; 3\sec\theta\tan\theta\,d\theta
x^2-9 \:=\:9\sec^2\theta-9 \;=\;9(\sec^2\theta-1) \;=\;9\tan^2\theta

\text{Substitute: }\;\int\frac{3\sec\theta\tan\theta\,d\theta}{9\tan^2\theta} \;=\;\tfrac{1}{3}\int\frac{\sec\theta}{\tan\theta}d\theta \;=\;\tfrac{1}{3}\int\frac{d\theta}{\sin\theta}

. . =\;\tfrac{1}{3}\int\csc\theta\,d\theta \;=\;\tfrac{1}{3}\ln|\csc\theta - \cot\theta| + CBack-substitute: .\sec\theta \:=\:\frac{x}{3} \quad\Rightarrow\quad \csc\theta \:=\:\frac{x}{\sqrt{x^2-9}} \quad\Rightarrow\quad \cot\theta \:=\:\frac{3}{\sqrt{x^2-9}}

We have: . \tfrac{1}{3}\ln \left|\frac{x}{\sqrt{x^2-9}} - \frac{3}{\sqrt{x^2-9}}\right| + C <br /> \;=\;\tfrac{1}{3}\ln\left|\frac{x-3}{\sqrt{x^2-9}}\right| +C

. . =\;\tfrac{1}{3}\ln\left|\frac{x-3}{\sqrt{(x-3)(x+3)}}\right| + C \;=\;\tfrac{1}{3}\ln\left|\frac{\sqrt{x-3}}{\sqrt{x+3}}\right| + C \;=\;\tfrac{1}{3}\ln\left|\sqrt{\frac{x-3}{x+3}}\right| +C

. . =\;\tfrac{1}{6}\ln\left|\frac{x-3}{x+3}\right| + C



 
greg1313 said:
You can avoid a trig sub:

$$\int\dfrac{1}{x^2-9}\,dx=\dfrac16\int\left(\dfrac{1}{x-3}-\dfrac{1}{x+3}\right)\,dx=\dfrac16\left(\ln|x-3|-\ln|x+3|\right)+C$$

$$=\dfrac16\ln\left|\dfrac{x-3}{x+3}\right|+C$$

How does $\frac{1}{x^2-9}$ simplify to $\frac{1}{6}( \frac{1}{x-3}-\frac{1}{x+3})$? I see that $x^3 - 9 = (x - 3)(x + 3)$ but how is this derived?
 
tmt said:
How does $\frac{1}{x^2-9}$ simplify to $\frac{1}{6}( \frac{1}{x-3}-\frac{1}{x+3})$? I see that $x^3 - 9 = (x - 3)(x + 3)$ but how is this derived?

We use partial fraction decomposition. We begin with the factorization:

$$\frac{1}{x^2-9}=\frac{1}{(x+3)(x-3)}$$

Then the assumption this factored form can also be written in the following form (sum):

$$\frac{1}{(x+3)(x-3)}=\frac{A}{x+3}+\frac{B}{x-3}$$

Now, I would at this point, for simplicity since we have linear factors, use the Heaviside cover-up method. On the left side, we see the root of the first factor is:

$$x=-3$$

Then we cover-up that factor, and evaluate what's left using that value for $x$ and equate that to $A$:

$$A=\frac{1}{-3-3}=-\frac{1}{6}$$

Then we do the same thing with the other factor for $B$:

$$B=\frac{1}{3+3}=\frac{1}{6}$$

And so, we obtain:

$$\frac{1}{(x+3)(x-3)}=\frac{-\dfrac{1}{6}}{x+3}+\frac{\dfrac{1}{6}}{x-3}=\frac{1}{6}\left(\frac{1}{x-3}-\frac{1}{x+3}\right)$$
 
Back when I was a student, one of the standard forms we learned was:

. . \int\frac{du}{u^2-a^2} \;=\;\frac{1}{2a}\ln\left|\frac{u-a}{u+a}\right| + C

It occupied only a few brain cells and saved hours of time.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K