MHB Integrate by Parts: Solving Difficult Integrand

Click For Summary
The discussion centers on integrating the complex function \[1/2*\int \sin(\sqrt{3}/2x)*\sec(\sqrt{3}x)\, dx\] using integration by parts. There is some confusion regarding the correct interpretation of the integral due to the lack of parentheses, with two potential forms presented. A suggested approach involves rewriting \(\sec(\sqrt{3}x)\) in terms of cosine and applying a substitution to simplify the integral. The proposed substitution \(u = \cos\left(\frac{\sqrt{3}}{2}x\right)\) leads to a more manageable integral that can be solved using partial fractions. This method provides a clearer path to solving the initially challenging integrand.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
I am trying to integrate a difficult integrand.
\[1/2*\int \sin(\sqrt(3)/2x)*\sec(\sqrt(3)x)\, dx\]
I know that it requires to use integrate by parts.
Which function do I use to for the differential and integrable?
 
Last edited:
Physics news on Phys.org
Well, I don't think this is solvable .
 
Cbarker1 said:
I am trying to integrate a difficult integrand.
\[1/2*\int \sin(\sqrt(3)/2x)*\sec(\sqrt(3)x)\, dx\]
I know that it requires to use integrate by parts.
Which function do I use to for the differential and integrable?

Hi Cbarker1, :)

I think there is a little ambiguity in your integral due to the lack of parenthesis. Did you meant this,

\[\frac{1}{2}\int\sin\left(\frac{\sqrt{3}x}{2}\right)\sec(\sqrt{3}x)\,dx\]

or this,

\[\frac{1}{2}\int\sin\left(\frac{\sqrt{3}}{2x}\right)\sec(\sqrt{3}x)\,dx\]

Kind Regards,
Sudharaka.
 
Cbarker1 said:
I am trying to integrate a difficult integrand.
\[1/2*\int \sin(\sqrt(3)/2x)*\sec(\sqrt(3)x)\, dx\]
I know that it requires to use integrate by parts.
Which function do I use to for the differential and integrable?
I am assuming that the first of Sudharaka's readings is the one that is intended: $\frac12{\displaystyle\int} \sin\bigl(\frac{\sqrt3}2x\bigr)\sec(\sqrt3x)\,dx$. If you write $$\sec(\sqrt3x) = \frac1{\cos(\sqrt3x)} = \frac1{2\cos^2 \bigl(\frac{\sqrt3}2x\bigr) -1}$$ and then make the substitution $u = \cos\bigl(\frac{\sqrt3}2x\bigr)$, the integral becomes $\displaystyle-\frac{\sqrt3}4 \int\frac{du}{2u^2-1}$, which you can integrate using partial fractions.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K