MHB Integrate by Parts: Solving Difficult Integrand

Click For Summary
The discussion centers on integrating the complex function \[1/2*\int \sin(\sqrt{3}/2x)*\sec(\sqrt{3}x)\, dx\] using integration by parts. There is some confusion regarding the correct interpretation of the integral due to the lack of parentheses, with two potential forms presented. A suggested approach involves rewriting \(\sec(\sqrt{3}x)\) in terms of cosine and applying a substitution to simplify the integral. The proposed substitution \(u = \cos\left(\frac{\sqrt{3}}{2}x\right)\) leads to a more manageable integral that can be solved using partial fractions. This method provides a clearer path to solving the initially challenging integrand.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
I am trying to integrate a difficult integrand.
\[1/2*\int \sin(\sqrt(3)/2x)*\sec(\sqrt(3)x)\, dx\]
I know that it requires to use integrate by parts.
Which function do I use to for the differential and integrable?
 
Last edited:
Physics news on Phys.org
Well, I don't think this is solvable .
 
Cbarker1 said:
I am trying to integrate a difficult integrand.
\[1/2*\int \sin(\sqrt(3)/2x)*\sec(\sqrt(3)x)\, dx\]
I know that it requires to use integrate by parts.
Which function do I use to for the differential and integrable?

Hi Cbarker1, :)

I think there is a little ambiguity in your integral due to the lack of parenthesis. Did you meant this,

\[\frac{1}{2}\int\sin\left(\frac{\sqrt{3}x}{2}\right)\sec(\sqrt{3}x)\,dx\]

or this,

\[\frac{1}{2}\int\sin\left(\frac{\sqrt{3}}{2x}\right)\sec(\sqrt{3}x)\,dx\]

Kind Regards,
Sudharaka.
 
Cbarker1 said:
I am trying to integrate a difficult integrand.
\[1/2*\int \sin(\sqrt(3)/2x)*\sec(\sqrt(3)x)\, dx\]
I know that it requires to use integrate by parts.
Which function do I use to for the differential and integrable?
I am assuming that the first of Sudharaka's readings is the one that is intended: $\frac12{\displaystyle\int} \sin\bigl(\frac{\sqrt3}2x\bigr)\sec(\sqrt3x)\,dx$. If you write $$\sec(\sqrt3x) = \frac1{\cos(\sqrt3x)} = \frac1{2\cos^2 \bigl(\frac{\sqrt3}2x\bigr) -1}$$ and then make the substitution $u = \cos\bigl(\frac{\sqrt3}2x\bigr)$, the integral becomes $\displaystyle-\frac{\sqrt3}4 \int\frac{du}{2u^2-1}$, which you can integrate using partial fractions.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K