- #1
skrat
- 748
- 8
Homework Statement
Calculate ##\int _Kz^2exp(\frac{2}{z})dz## where ##K## is unit circle.
Homework Equations
The Attempt at a Solution
Hmmm, I am having some troubles here. Here is how I tried:
In general ##\int _\gamma f(z)dz=2\pi i\sum_{k=1}^{n}I(\gamma,a_k)Res(f,a_k)## where in my case ##I(\gamma , a_k)=1##.
Now ##Res(f,a_k)##:
##f(z)=z^2exp(\frac{2}{z})=z^2\sum_{n=0}^{\infty}\frac{1}{n!}(\frac{2}{z})^n=\sum_{n=0}^{\infty}\frac{1}{n!}\frac{2^n}{z^{n-2}}##
To get ##\frac{1}{z}## clearly ##n-2=1## so ##n=3##.
Which gives me ##Res(f , 0)=\frac{4}{3}##.
Therefore ##\int _Kz^2exp(\frac{2}{z})dz=2\pi i \frac{4}{3}##.Or is that completely wrong? Thanks in advance!