Integrating a Complex Integral: Solving the Mystery of the Missing Factor 3

Click For Summary
SUMMARY

The forum discussion focuses on solving the integral \pi \int\limits_0^\pi {e^{2x} } \left( {\frac{1}{2} - \frac{1}{2}\cos 2x} \right)dx. The user initially splits the integral and applies integration by parts to evaluate \int {e^{2x} \cdot \cos(2x)} dx and \int {\sin(2x) \cdot e^{2x}} dx. After several iterations, the user arrives at an expression that includes an erroneous factor of 3, which is attributed to sign mistakes in the calculations. Corrections are suggested to eliminate the factor and achieve the expected result.

PREREQUISITES
  • Understanding of integration techniques, specifically integration by parts.
  • Familiarity with exponential functions and trigonometric identities.
  • Knowledge of definite integrals and their evaluation.
  • Experience with mathematical notation and expressions in LaTeX.
NEXT STEPS
  • Review integration by parts in calculus, focusing on the formula \int u \, dv = uv - \int v \, du.
  • Study the properties of exponential functions and their integrals, particularly e^{ax}.
  • Learn about trigonometric integrals, especially \int \sin(kx) \, dx and \int \cos(kx) \, dx.
  • Practice solving definite integrals with limits, ensuring correct application of boundary conditions.
USEFUL FOR

Mathematics students, educators, and anyone involved in calculus or advanced mathematics who seeks to deepen their understanding of integration techniques and error correction in mathematical computations.

TSN79
Messages
422
Reaction score
0
I'm trying to perform the following integral
<br /> \pi \int\limits_0^\pi {e^{2x} } \left( {\frac{1}{2} - \frac{1}{2}\cos 2x} \right)dx<br />
I split the integral and temporarely ignore the Pi so that I get
<br /> \frac{1}{2}\int {e^{2x} dx} - \frac{1}{2}\int {e^{2x} \cdot \cos } \left( {2x} \right)dx<br />
Now, using partial integration on the second part I get
<br /> \int {e^{2x} \cdot \cos \left( {2x} \right)} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - \int {\sin \left( {2x} \right)} \cdot e^{2x} dx<br />
Using partial integration again on the right integral I get
<br /> \int {\sin \left( {2x} \right)} \cdot e^{2x} dx = - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) + \int {\cos \left( {2x} \right) \cdot e^{2x} dx} <br />
I appears I haven't gotten anywhere, but I can now combine the last two lines and get
<br /> \begin{array}{l}<br /> \int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - (\frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right)} - \int {\cos \left( {2x} \right) \cdot e^{2x} \left. {dx} \right)} \\ <br /> 2\int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} } \cdot \sin \left( {2x} \right) - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\ <br /> \int {\cos \left( {2x} \right)} \cdot e^{2x} dx = \frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\ <br /> \end{array}<br />
Finally, multiplying in the Pi and the first initial half of the integral:
<br /> \pi \cdot \left( {\frac{1}{4}e^{2x} - \frac{1}{2}\left( {\frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) - \frac{1}{4}e^{2x} \cdot \cos \left( {2x} \right)} \right)} \right)<br />
Putting in Pi and 0 for x, and subtracting the two, I arrive at this expression:
<br /> \frac{{3\pi \left( {e^{2\pi } - 1} \right)}}{8}<br />
The problem is that this factor 3 shouldn't be there. If you just perform the initial integration on a calculator the answer is the same except for the factor 3, so where am I going wrong here?
 
Last edited:
Mathematics news on Phys.org
You messed up a couple minus signs. I'm going to copy and paste your code with corrections.
<br /> \begin{array}{l}<br /> \int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - (-\frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right)} + \int {\cos \left( {2x} \right) \cdot e^{2x} \left. {dx} \right)} \\ <br /> 2\int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} } \cdot \sin \left( {2x} \right) + \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\ <br /> \int {\cos \left( {2x} \right)} \cdot e^{2x} dx = \frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) + \frac{1}{4}e^{2x} \cdot \cos \left( {2x} \right) \\ <br /> \end{array}<br />

That should point you in right direction. Eventually, you should have something like this:

<br /> \left.\frac{1}{4} \mathrm{e}^{2x} \right|_0^\pi - \left.\frac{1}{8}\mathrm{e}^{2x}\left(\cos 2x + \sin 2x\right)\right|_0^\pi<br />

So, you'll get something: 2Y - Y = Y where Y is the answer you expect.
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K