I'm using a 3rd party physics engine to run rigid body physics. It just updates the bodies once every 16 ms or so. I'm trying to write an algorithm to predict where free-falling bodies will be in 2 seconds using standard physics equations. I'm having trouble with predicting angular velocity and rotation though.(adsbygoogle = window.adsbygoogle || []).push({});

I know the physics engine calculates angular velocity by subtracting 30% velocity/second from the current velocity. If I calculate the angular velocity at t=1 and at t=2, the angular velocity at t=2 is 30% of that at t=1.

I've confirmed that with the physics engine, every frame that is run, the change in angular velocity over the change in time is always 30%.

However, if I try to predict ahead of the object with some time t, using the equation:

NewSpeed = OldSpeed - ( OldSpeed * Damping * t )

the predicted angular velocity loss begins to differ from the real angular velocity loss as t gets larger.

For instance, if I predict the angular velocity at t1=0.1 and t2=0.2 and compare the difference over t2 - t1, the angular velocity loss is about 30%, as it should be.

However, at t1=1.9 and t2=2.0, the difference over t2 - t1 shows an angular velocity loss of about 45%, way more than it should have been.

So, my equation:

NewSpeed = OldSpeed - ( OldSpeed * Damping * t)

Seems to be wrong. I'm wondering if there's some calculus magic that could give me a better equation, with the knowledge that angular velocity is constantly decreasing by 30%.

Thanks for any help - if this gets solved, I'll have a part 2 for my question on how to calculate the current rotation given an initial rotation, initial angular velocity, and angular damping.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integrating angular damping into angular velocity and rotation

Loading...

Similar Threads for Integrating angular damping |
---|

I How to derive this log related integration formula? |

I An integration Solution |

B I Feel Weird Using Integral Tables |

B Methods of integration: direct and indirect substitution |

A Getting a finite result from a non-converging integral |

**Physics Forums | Science Articles, Homework Help, Discussion**