A Integrating the Stokeslet: Solving Expression 7 from ResearchGate Publication

steve1763
Messages
13
Reaction score
0
TL;DR Summary
I'm having trouble figuring out this integral. The fact that we are integrating vectors, absolute values, tensor products etc doesnt help.
https://www.researchgate.net/publication/301874096_Emergent_behavior_in_active_colloids/link/5730bb3608ae08415e6a7c0a/download (expression 9 on this document derivation). I understand the need for substitution etc into the integral. What puzzles me is how the integral equals what it does. If somebody could show me how to solve the integral that would be brilliant.

Perhaps a quicker question would be, how does one integrate the Stokeslet? If its value is that of expression 7.

Thank you
 
Physics news on Phys.org
The tensor field ##\mathbf{O}(\mathbf{r})## is defined in equation ##(7)##,\begin{align*}
\mathbf{O}(\mathbf{r}) \equiv \frac{1}{8\pi \eta}\left( \frac{1}{r} \mathbf{1} + \frac{1}{r^3} \mathbf{r} \otimes \mathbf{r} \right)
\end{align*}The Green's function solution to the Navier-Stokes equation in terms of a forcing term ##\mathbf{f}## is \begin{align*}
\mathbf{v}(\mathbf{r}, t) = \int \mathbf{O}(\mathbf{r} - \mathbf{r}') \mathbf{f}(\mathbf{r}',t) d^3 x'
\end{align*}They consider a monopole forcing term ##\mathbf{f} = f\mathbf{e} \delta(\mathbf{r} - \mathbf{r}_0)## localised at ##\mathbf{r}_0##. In this case you have\begin{align*}
\mathbf{v}(\mathbf{r}, t) &= \int \mathbf{O}(\mathbf{r} - \mathbf{r}') f\mathbf{e} \delta(\mathbf{r}' - \mathbf{r}_0)d^3 x' \\
&= \mathbf{O}(\mathbf{r} - \mathbf{r}_0) f \mathbf{e}
\end{align*}For brevity one can define ##r \equiv |\mathbf{r} - \mathbf{r}_0|## and ##\hat{\mathbf{r}} \equiv (\mathbf{r} - \mathbf{r}_0)/r##. Then, using the definition of ##\mathbf{O}(\mathbf{r})##, you have\begin{align*}
\mathbf{v}(\mathbf{r}, t) &= \frac{f}{8\pi \eta r}\left( \mathbf{1} + \hat{\mathbf{r}} \otimes \hat{\mathbf{r}} \right) \mathbf{e}
\end{align*}Recall from tensor algebra that ##\mathbf{1}\mathbf{e} = \mathbf{e}##, and also ##(\hat{\mathbf{r}} \otimes \hat{\mathbf{r}})(\mathbf{e}) \equiv (\hat{\mathbf{r}} \cdot \mathbf{e}) \hat{\mathbf{r}}##. Then you get the quoted result,\begin{align*}
\mathbf{v}(\mathbf{r}, t) &= \frac{f}{8\pi \eta r}\left( \mathbf{e} +(\hat{\mathbf{r}} \cdot \mathbf{e}) \hat{\mathbf{r}} \right)
\end{align*}
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top