Pacopag
- 193
- 4
Homework Statement
I can find on Wikipedia the "formula" for integration by parts for the case where there is a multi-variable integrand, but I would like to know what substitutions to make in order to show my steps.
Homework Equations
For multiple variables we have
\int_{\Omega}{{\partial u}\over{\partial x_i}}vdx=-\int_{\Omega}{{\partial v}\over{\partial x_i}}udx.
assuming that we can drop the surface term for physical reasons. Here, u and v are functions of several variables, say {x_1, x_2, ...x_n}
First of all, should the dx be a dx_i ??
Now, my real question is; what substitutions do I make in order to show this?
The Attempt at a Solution
I feel like the generalization from 1D to the above higher-D version should be obvious, but it just isn't to me. I guess what is bothering me is that e.g.
du = \sum {{\partial u}\over{\partial x_i}}dx_i. And I can't get this to fit into a derivation of the equation in 2. (above)