B Integration by parts of inverse sine, a solved exercise, some doubts...

Click For Summary
The discussion focuses on evaluating the integral of the inverse sine function using integration by parts. The initial setup involves defining U as sin^(-1)x and dV as dx, leading to the expression x sin^(-1)x minus an integral that requires substitution. The second integral, ∫(x/√(1-x^2)) dx, is solved using the substitution method with u = 1 - x^2, resulting in a simplified integral. The final steps involve applying the power rule for integration to arrive at the complete solution, which includes the term √(1-x^2). The thread also touches on formatting for displaying integrals elegantly.
mcastillo356
Gold Member
Messages
641
Reaction score
349
TL;DR
There are steps I would like to understand, or, better said, share, check out.
Hi, PF, here goes an easy integral, meant to be an example of integration by parts.

Use integration by parts to evaluate
##\int \sin^{-1}x \, dx##

Let ##U=\sin^{-1}x,\quad{dV=dx}##
Then ##dU=dx/\sqrt{1-x^2},\quad{V=x}##

##=x\sin^{-1}x-\int \frac{x}{\sqrt{1-x^2} \, dx}##

Let ##u=1-x^2##,
##du=-2xdx##

##=x\sin^{-1}x+\frac{1}{2}\int u^{-1/2} \, du##
##=x\sin^{-1}x+u^{1/2}+C##
##=x\sin^{-1}x+\sqrt{1-x^2}+C##
Last substitution steps are where I need some clue: specifically understanding how, passed the first step, i.e, integration by parts, second integral is solved.

Attempt:
Second integral, ##\int \frac{x}{\sqrt{1-x^2}}\,dx##, is not integration by parts, but the substitution method. If so, I will outline it:

##\int \frac{1}{\sqrt{1-x^2}}\cdot x##, which suits the circumstances to evaluate by the substitution method they way it does.

Greetings!
 
Last edited:
Physics news on Phys.org
After letting ##u=1-x^2##, we have that ##\frac{du}{-2x}=dx##. Substituting this into the second integral, we get that it is equivalent to $$-\frac12\int u^{-1/2}du$$. Using power rule and replacing the definition of ##u##, we get the result.
 
Last edited:
  • Like
  • Love
Likes mcastillo356 and PeroK
mathhabibi said:
After letting ##u=1-x^2##, we have that ##\frac{du}{-2x}=dx##. Substituting this into the second integral, we get that it is equivalent to ##-\frac12\int u^{-1/2}du##. Using power rule and replacing the definition of ##u##, we get the result.
Hi, @mathhabibi, you mean power rule for integration?.
By the way, how is it to display a bigger and elegant indefinite integal?
Thanks!
 
mcastillo356 said:
Hi, @mathhabibi, you mean power rule for integration?.
Yes.
mcastillo356 said:
By the way, how is it to display a bigger and elegant indefinite integal?
He used standalone (i.e. $$) tex delimiters rather than inline (##).
 
  • Like
Likes mcastillo356
Hi, PF
mathhabibi said:
After letting ##u=1-x^2##, we have that ##\frac{du}{-2x}=dx##. Substituting this into the second integral, we get that it is equivalent to $$-\frac12\int u^{-1/2}du$$.
$$-\int {\frac{x}{\sqrt{1-x^2}}\,dx}\Leftrightarrow{\frac{1}{2}\int u^{-1/2}\,du}$$
mathhabibi said:
Using power rule and replacing the definition of ##u##, we get the result.
$$\frac{1}{2}\int u^{-1/2}\,du$$
Applying the Power Rule for integration
$$=\frac{1}{2}\int {u^{-1/2}\,du}=\frac{1}{2}\cdot{\frac{u^{1/2}}{1/2}}+C=u^{1/2}+C$$
Replacing,
$$u=1-x^2\Rightarrow{u^{1/2}=\sqrt{1-x^2}}$$

Greetings!