Integration by parts of inverse sine, a solved exercise, some doubts...

Click For Summary
SUMMARY

The discussion focuses on the integration by parts of the integral ##\int \sin^{-1}x \, dx##. The participants detail the steps involved, starting with the choice of ##U=\sin^{-1}x## and ##dV=dx##, leading to the expression ##x\sin^{-1}x - \int \frac{x}{\sqrt{1-x^2}} \, dx##. The second integral is evaluated using the substitution method with ##u=1-x^2##, resulting in the final expression ##x\sin^{-1}x + \sqrt{1-x^2} + C##. The discussion emphasizes the application of the power rule for integration in the final steps.

PREREQUISITES
  • Understanding of integration by parts
  • Familiarity with inverse trigonometric functions, specifically ##\sin^{-1}x##
  • Knowledge of substitution methods in integration
  • Proficiency in applying the power rule for integration
NEXT STEPS
  • Study advanced techniques in integration, including trigonometric substitutions
  • Learn about the properties and applications of inverse trigonometric functions
  • Explore the use of LaTeX for displaying mathematical expressions elegantly
  • Practice solving integrals involving combinations of integration techniques
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone seeking to improve their skills in solving complex integrals.

mcastillo356
Gold Member
Messages
658
Reaction score
361
TL;DR
There are steps I would like to understand, or, better said, share, check out.
Hi, PF, here goes an easy integral, meant to be an example of integration by parts.

Use integration by parts to evaluate
##\int \sin^{-1}x \, dx##

Let ##U=\sin^{-1}x,\quad{dV=dx}##
Then ##dU=dx/\sqrt{1-x^2},\quad{V=x}##

##=x\sin^{-1}x-\int \frac{x}{\sqrt{1-x^2} \, dx}##

Let ##u=1-x^2##,
##du=-2xdx##

##=x\sin^{-1}x+\frac{1}{2}\int u^{-1/2} \, du##
##=x\sin^{-1}x+u^{1/2}+C##
##=x\sin^{-1}x+\sqrt{1-x^2}+C##
Last substitution steps are where I need some clue: specifically understanding how, passed the first step, i.e, integration by parts, second integral is solved.

Attempt:
Second integral, ##\int \frac{x}{\sqrt{1-x^2}}\,dx##, is not integration by parts, but the substitution method. If so, I will outline it:

##\int \frac{1}{\sqrt{1-x^2}}\cdot x##, which suits the circumstances to evaluate by the substitution method they way it does.

Greetings!
 
Last edited:
Physics news on Phys.org
After letting ##u=1-x^2##, we have that ##\frac{du}{-2x}=dx##. Substituting this into the second integral, we get that it is equivalent to $$-\frac12\int u^{-1/2}du$$. Using power rule and replacing the definition of ##u##, we get the result.
 
Last edited:
  • Like
  • Love
Likes   Reactions: mcastillo356 and PeroK
mathhabibi said:
After letting ##u=1-x^2##, we have that ##\frac{du}{-2x}=dx##. Substituting this into the second integral, we get that it is equivalent to ##-\frac12\int u^{-1/2}du##. Using power rule and replacing the definition of ##u##, we get the result.
Hi, @mathhabibi, you mean power rule for integration?.
By the way, how is it to display a bigger and elegant indefinite integal?
Thanks!
 
mcastillo356 said:
Hi, @mathhabibi, you mean power rule for integration?.
Yes.
mcastillo356 said:
By the way, how is it to display a bigger and elegant indefinite integal?
He used standalone (i.e. $$) tex delimiters rather than inline (##).
 
  • Like
Likes   Reactions: mcastillo356
Hi, PF
mathhabibi said:
After letting ##u=1-x^2##, we have that ##\frac{du}{-2x}=dx##. Substituting this into the second integral, we get that it is equivalent to $$-\frac12\int u^{-1/2}du$$.
$$-\int {\frac{x}{\sqrt{1-x^2}}\,dx}\Leftrightarrow{\frac{1}{2}\int u^{-1/2}\,du}$$
mathhabibi said:
Using power rule and replacing the definition of ##u##, we get the result.
$$\frac{1}{2}\int u^{-1/2}\,du$$
Applying the Power Rule for integration
$$=\frac{1}{2}\int {u^{-1/2}\,du}=\frac{1}{2}\cdot{\frac{u^{1/2}}{1/2}}+C=u^{1/2}+C$$
Replacing,
$$u=1-x^2\Rightarrow{u^{1/2}=\sqrt{1-x^2}}$$

Greetings!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K