MHB Integration Of trig. Functions sec^3

Click For Summary
The discussion revolves around alternative methods for integrating the function sec^3(θ) without using integration by parts. A suggested approach involves substituting u = sin(θ) to transform the integral into a more manageable form, utilizing partial fractions to simplify the expression. The integration process leads to a final result that includes logarithmic terms and fractions. Additionally, there are comments on improving clarity in mathematical notation, specifically regarding LaTeX formatting. Overall, the thread emphasizes the exploration of different integration techniques while highlighting the importance of clear presentation in mathematical discussions.
paulmdrdo1
Messages
382
Reaction score
0
what method should i use here(except integration by parts)?

\begin{align*}\displaystyle \int sec^3\theta \,d\theta\end{align*}
 
Physics news on Phys.org
paulmdrdo said:
what method should i use here(except integration by parts)?

\begin{align*}\displaystyle \int sec^3\theta \,d\theta\end{align*}

[math]\displaystyle \begin{align*} \int{\sec^3{(\theta)}\,d\theta} &= \int{\frac{1}{\cos^3{(\theta)}}\,d\theta} \\ &= \int{ \frac{\cos{(\theta)}}{\cos^4{(\theta)}}\,d\theta} \\ &= \int{ \frac{\cos{(\theta)}}{\left[ \cos^2{(\theta)}\right] ^2 } \,d\theta } \\ &= \int{ \frac{\cos{(\theta)}}{ \left[ 1 - \sin^2{(\theta)} \right] ^2 } \,d\theta} \end{align*}[/math]

Now let [math]\displaystyle \begin{align*} u = \sin{(\theta)} \implies du = \cos{(\theta)}\,d\theta \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} \int{ \frac{\cos{(\theta)}}{ \left[ 1 - \sin^2{(\theta)} \right] ^2 } \,d\theta} &= \int{ \frac{1}{ \left( 1 - u^2 \right) ^2 } \, du } \\ &= \int{ \frac{1}{ \left[ \left( 1 - u \right) \left( 1 + u \right) \right] ^2 } \,du} \\ &= \int{ \left[ \frac{1}{ \left( 1- u \right) \left( 1 + u \right) } \right] ^2 \,du} \end{align*}[/math]

Now applying Partial Fractions

[math]\displaystyle \begin{align*} \frac{A}{1 - u} + \frac{B}{1 + u} &\equiv \frac{1}{(1 - u)(1 + u)} \\ \frac{A(1 + u) + B(1 - u)}{(1 - u)(1 + u)} &\equiv \frac{1}{(1 - u)(1 + u)} \\ A(1 + u) + B(1 -u) &\equiv 1 \end{align*}[/math]

Let [math]\displaystyle \begin{align*} u = 1 \end{align*}[/math] and we find [math]\displaystyle \begin{align*} A = \frac{1}{2} \end{align*}[/math], and let [math]\displaystyle \begin{align*} u = -1 \end{align*}[/math] and we find [math]\displaystyle \begin{align*} B = \frac{1}{2} \end{align*}[/math], so

[math]\displaystyle \begin{align*} \frac{1}{(1 - u)(1 + u)} = \frac{1}{2(1 - u)} + \frac{1}{2(1 + u)} \end{align*}[/math], so continuing with the integral...

[math]\displaystyle \begin{align*} \int{ \left[ \frac{1}{(1 - u)(1 + u)} \right] ^2 \, du} &= \int{ \left[ \frac{1}{2(1 - u)} + \frac{1}{2(1 + u)} \right] ^2 \, du } \\ &= \int{ \frac{1}{4(1 - u)^2} + \frac{1}{2(1 - u)(1 + u)} + \frac{1}{4(1 + u)^2}\, du } \\ &= \int{ \frac{1}{4( 1- u)^2} + \frac{1}{4(1 - u)} + \frac{1}{4(1 + u)} + \frac{1}{4( 1 + u)^2} \, du} \\ &= \frac{1}{4} \int{ (1 - u)^{-2} + \frac{1}{1 - u} + \frac{1}{1 + u} + (1 + u)^{-2} \,du} \\ &= \frac{1}{4} \left[ (1 - u)^{-1} - \ln{ | 1 - u | } + \ln{ |1 + u| } - (1 + u)^{-1} \right] + C \\ &= \frac{1}{4} \left[ \frac{1}{1 - \sin{(\theta)} } - \ln{ \left| 1 - \sin{(\theta)} \right| } + \ln{ \left| 1 + \sin{(\theta)} \right| } - \frac{1}{1 + \sin{(\theta)} } \right] + C \end{align*}[/math]
 
With a bit of manipulation, we can get this in a form we can integrate directly:

$$\sec^3(\theta)=\frac{1}{2}\left(\sec^3(\theta)+ \sec^3(\theta) \right)=\frac{1}{2}\left(\sec^3(\theta)+ \sec(\theta)\left(\tan^2(\theta)+1 \right) \right)=$$

$$\frac{1}{2}\left(\sec^3(\theta)+ \sec(\theta)\tan^2(\theta)+\sec(\theta)\frac{\tan(\theta)+ \sec(\theta)}{\tan(\theta)+\sec(\theta)} \right)=$$

$$\frac{1}{2}\left(\left(\sec(\theta)\sec^2(\theta)+\sec(\theta)\tan^2(\theta) \right)+\left(\frac{\sec(\theta)\tan(\theta)+\sec^2(\theta)}{\sec(\theta)+\tan(\theta)} \right) \right)=$$

$$\frac{1}{2}\frac{d}{d\theta}\left(\sec(\theta)\tan(\theta)+\ln\left|\sec(\theta)+\tan(\theta) \right| \right)$$
 
A nice method to evaluate it is by parts , try it !
 
this is my solution using integration by parts. :D

\begin{align*}\displaystyle \int \sec^3\,(\theta)\,d\theta\\ let&u\,=\, \sec(\theta)\\ du&=\, \sec(\theta) \tan(\theta)\\\int dv&=\,\int \sec^2(\theta)\,d\theta\\v&=\,\tan^2(\theta)\\ \sec(\theta)& \tan(\theta)-\int \tan^2(\theta)\,\sec(\theta)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec(\theta)\,(\sec^2(\theta)-1)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec^3(\theta)\,d\theta+\int \sec(\theta)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|+C\\\int \sec^3(\theta)& d\theta=\,\sec(\theta) \tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|-\int \sec^3(\theta) d\theta\\2\int \sec^3(\theta)&=\,\sec(\theta) \tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|\\ \sec^3(\theta)&=\,\frac{1}{2}\sec(\theta)\, \tan(\theta)+\frac{1}{2}\ln |\sec(\theta)+\tan(\theta)|+C\end{align*}
 
Last edited:
While your method is solid, you have several typos which distract from an otherwise good post. Can you spot them?

Also, allow me to suggest that in your use of $\LaTeX$, you precede predefined functions (trigonometric, logarithmic, etc.) with a backslash so that their names are not italicized. I also suggest enclosing function parameters with parentheses so that it is clear just what the parameters are.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K