Integration Of trig. Functions sec^3

Click For Summary
SUMMARY

The integral of secant cubed, expressed as ∫ sec^3(θ) dθ, can be evaluated using substitution and partial fractions, leading to the result ∫ sec^3(θ) dθ = (1/2) sec(θ) tan(θ) + (1/2) ln |sec(θ) + tan(θ)| + C. The discussion emphasizes the use of substitution u = sin(θ) and the application of partial fractions to simplify the integral. Additionally, integration by parts is suggested as a valid method, although the original poster seeks alternatives.

PREREQUISITES
  • Understanding of trigonometric functions and their integrals
  • Familiarity with integration techniques, including substitution and partial fractions
  • Knowledge of LaTeX for mathematical notation
  • Basic calculus concepts, particularly integration by parts
NEXT STEPS
  • Study the method of integration by parts in detail
  • Learn about the application of partial fractions in integral calculus
  • Explore advanced integration techniques for trigonometric functions
  • Review LaTeX formatting for mathematical expressions to improve clarity
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and integral techniques, as well as anyone looking to enhance their understanding of trigonometric integrals.

paulmdrdo1
Messages
382
Reaction score
0
what method should i use here(except integration by parts)?

\begin{align*}\displaystyle \int sec^3\theta \,d\theta\end{align*}
 
Physics news on Phys.org
paulmdrdo said:
what method should i use here(except integration by parts)?

\begin{align*}\displaystyle \int sec^3\theta \,d\theta\end{align*}

[math]\displaystyle \begin{align*} \int{\sec^3{(\theta)}\,d\theta} &= \int{\frac{1}{\cos^3{(\theta)}}\,d\theta} \\ &= \int{ \frac{\cos{(\theta)}}{\cos^4{(\theta)}}\,d\theta} \\ &= \int{ \frac{\cos{(\theta)}}{\left[ \cos^2{(\theta)}\right] ^2 } \,d\theta } \\ &= \int{ \frac{\cos{(\theta)}}{ \left[ 1 - \sin^2{(\theta)} \right] ^2 } \,d\theta} \end{align*}[/math]

Now let [math]\displaystyle \begin{align*} u = \sin{(\theta)} \implies du = \cos{(\theta)}\,d\theta \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} \int{ \frac{\cos{(\theta)}}{ \left[ 1 - \sin^2{(\theta)} \right] ^2 } \,d\theta} &= \int{ \frac{1}{ \left( 1 - u^2 \right) ^2 } \, du } \\ &= \int{ \frac{1}{ \left[ \left( 1 - u \right) \left( 1 + u \right) \right] ^2 } \,du} \\ &= \int{ \left[ \frac{1}{ \left( 1- u \right) \left( 1 + u \right) } \right] ^2 \,du} \end{align*}[/math]

Now applying Partial Fractions

[math]\displaystyle \begin{align*} \frac{A}{1 - u} + \frac{B}{1 + u} &\equiv \frac{1}{(1 - u)(1 + u)} \\ \frac{A(1 + u) + B(1 - u)}{(1 - u)(1 + u)} &\equiv \frac{1}{(1 - u)(1 + u)} \\ A(1 + u) + B(1 -u) &\equiv 1 \end{align*}[/math]

Let [math]\displaystyle \begin{align*} u = 1 \end{align*}[/math] and we find [math]\displaystyle \begin{align*} A = \frac{1}{2} \end{align*}[/math], and let [math]\displaystyle \begin{align*} u = -1 \end{align*}[/math] and we find [math]\displaystyle \begin{align*} B = \frac{1}{2} \end{align*}[/math], so

[math]\displaystyle \begin{align*} \frac{1}{(1 - u)(1 + u)} = \frac{1}{2(1 - u)} + \frac{1}{2(1 + u)} \end{align*}[/math], so continuing with the integral...

[math]\displaystyle \begin{align*} \int{ \left[ \frac{1}{(1 - u)(1 + u)} \right] ^2 \, du} &= \int{ \left[ \frac{1}{2(1 - u)} + \frac{1}{2(1 + u)} \right] ^2 \, du } \\ &= \int{ \frac{1}{4(1 - u)^2} + \frac{1}{2(1 - u)(1 + u)} + \frac{1}{4(1 + u)^2}\, du } \\ &= \int{ \frac{1}{4( 1- u)^2} + \frac{1}{4(1 - u)} + \frac{1}{4(1 + u)} + \frac{1}{4( 1 + u)^2} \, du} \\ &= \frac{1}{4} \int{ (1 - u)^{-2} + \frac{1}{1 - u} + \frac{1}{1 + u} + (1 + u)^{-2} \,du} \\ &= \frac{1}{4} \left[ (1 - u)^{-1} - \ln{ | 1 - u | } + \ln{ |1 + u| } - (1 + u)^{-1} \right] + C \\ &= \frac{1}{4} \left[ \frac{1}{1 - \sin{(\theta)} } - \ln{ \left| 1 - \sin{(\theta)} \right| } + \ln{ \left| 1 + \sin{(\theta)} \right| } - \frac{1}{1 + \sin{(\theta)} } \right] + C \end{align*}[/math]
 
With a bit of manipulation, we can get this in a form we can integrate directly:

$$\sec^3(\theta)=\frac{1}{2}\left(\sec^3(\theta)+ \sec^3(\theta) \right)=\frac{1}{2}\left(\sec^3(\theta)+ \sec(\theta)\left(\tan^2(\theta)+1 \right) \right)=$$

$$\frac{1}{2}\left(\sec^3(\theta)+ \sec(\theta)\tan^2(\theta)+\sec(\theta)\frac{\tan(\theta)+ \sec(\theta)}{\tan(\theta)+\sec(\theta)} \right)=$$

$$\frac{1}{2}\left(\left(\sec(\theta)\sec^2(\theta)+\sec(\theta)\tan^2(\theta) \right)+\left(\frac{\sec(\theta)\tan(\theta)+\sec^2(\theta)}{\sec(\theta)+\tan(\theta)} \right) \right)=$$

$$\frac{1}{2}\frac{d}{d\theta}\left(\sec(\theta)\tan(\theta)+\ln\left|\sec(\theta)+\tan(\theta) \right| \right)$$
 
A nice method to evaluate it is by parts , try it !
 
this is my solution using integration by parts. :D

\begin{align*}\displaystyle \int \sec^3\,(\theta)\,d\theta\\ let&u\,=\, \sec(\theta)\\ du&=\, \sec(\theta) \tan(\theta)\\\int dv&=\,\int \sec^2(\theta)\,d\theta\\v&=\,\tan^2(\theta)\\ \sec(\theta)& \tan(\theta)-\int \tan^2(\theta)\,\sec(\theta)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec(\theta)\,(\sec^2(\theta)-1)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec^3(\theta)\,d\theta+\int \sec(\theta)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|+C\\\int \sec^3(\theta)& d\theta=\,\sec(\theta) \tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|-\int \sec^3(\theta) d\theta\\2\int \sec^3(\theta)&=\,\sec(\theta) \tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|\\ \sec^3(\theta)&=\,\frac{1}{2}\sec(\theta)\, \tan(\theta)+\frac{1}{2}\ln |\sec(\theta)+\tan(\theta)|+C\end{align*}
 
Last edited:
While your method is solid, you have several typos which distract from an otherwise good post. Can you spot them?

Also, allow me to suggest that in your use of $\LaTeX$, you precede predefined functions (trigonometric, logarithmic, etc.) with a backslash so that their names are not italicized. I also suggest enclosing function parameters with parentheses so that it is clear just what the parameters are.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K