Integration Of trig. Functions sec^3

Click For Summary

Discussion Overview

The discussion revolves around the integration of the trigonometric function secant cubed, specifically the integral \(\int \sec^3 \theta \, d\theta\). Participants explore various methods for solving this integral, including integration by parts and alternative approaches.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants inquire about methods to integrate \(\sec^3 \theta\) without using integration by parts.
  • One participant provides a detailed manipulation of the integral, suggesting a transformation that leads to a form suitable for direct integration.
  • Another participant shares a solution using integration by parts, detailing the steps and transformations involved in the process.
  • There is a suggestion to evaluate the integral using integration by parts, with encouragement to explore this method further.
  • A later reply points out typographical errors in a previous post while also providing suggestions for improving the clarity of LaTeX formatting.

Areas of Agreement / Disagreement

Participants express differing views on the best method to approach the integral, with no consensus on a single preferred technique. Some methods are proposed and explored, but the discussion remains unresolved regarding the optimal approach.

Contextual Notes

Participants' methods rely on various assumptions and transformations, and some steps in the integration process may depend on specific interpretations of trigonometric identities or integration techniques.

paulmdrdo1
Messages
382
Reaction score
0
what method should i use here(except integration by parts)?

\begin{align*}\displaystyle \int sec^3\theta \,d\theta\end{align*}
 
Physics news on Phys.org
paulmdrdo said:
what method should i use here(except integration by parts)?

\begin{align*}\displaystyle \int sec^3\theta \,d\theta\end{align*}

[math]\displaystyle \begin{align*} \int{\sec^3{(\theta)}\,d\theta} &= \int{\frac{1}{\cos^3{(\theta)}}\,d\theta} \\ &= \int{ \frac{\cos{(\theta)}}{\cos^4{(\theta)}}\,d\theta} \\ &= \int{ \frac{\cos{(\theta)}}{\left[ \cos^2{(\theta)}\right] ^2 } \,d\theta } \\ &= \int{ \frac{\cos{(\theta)}}{ \left[ 1 - \sin^2{(\theta)} \right] ^2 } \,d\theta} \end{align*}[/math]

Now let [math]\displaystyle \begin{align*} u = \sin{(\theta)} \implies du = \cos{(\theta)}\,d\theta \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} \int{ \frac{\cos{(\theta)}}{ \left[ 1 - \sin^2{(\theta)} \right] ^2 } \,d\theta} &= \int{ \frac{1}{ \left( 1 - u^2 \right) ^2 } \, du } \\ &= \int{ \frac{1}{ \left[ \left( 1 - u \right) \left( 1 + u \right) \right] ^2 } \,du} \\ &= \int{ \left[ \frac{1}{ \left( 1- u \right) \left( 1 + u \right) } \right] ^2 \,du} \end{align*}[/math]

Now applying Partial Fractions

[math]\displaystyle \begin{align*} \frac{A}{1 - u} + \frac{B}{1 + u} &\equiv \frac{1}{(1 - u)(1 + u)} \\ \frac{A(1 + u) + B(1 - u)}{(1 - u)(1 + u)} &\equiv \frac{1}{(1 - u)(1 + u)} \\ A(1 + u) + B(1 -u) &\equiv 1 \end{align*}[/math]

Let [math]\displaystyle \begin{align*} u = 1 \end{align*}[/math] and we find [math]\displaystyle \begin{align*} A = \frac{1}{2} \end{align*}[/math], and let [math]\displaystyle \begin{align*} u = -1 \end{align*}[/math] and we find [math]\displaystyle \begin{align*} B = \frac{1}{2} \end{align*}[/math], so

[math]\displaystyle \begin{align*} \frac{1}{(1 - u)(1 + u)} = \frac{1}{2(1 - u)} + \frac{1}{2(1 + u)} \end{align*}[/math], so continuing with the integral...

[math]\displaystyle \begin{align*} \int{ \left[ \frac{1}{(1 - u)(1 + u)} \right] ^2 \, du} &= \int{ \left[ \frac{1}{2(1 - u)} + \frac{1}{2(1 + u)} \right] ^2 \, du } \\ &= \int{ \frac{1}{4(1 - u)^2} + \frac{1}{2(1 - u)(1 + u)} + \frac{1}{4(1 + u)^2}\, du } \\ &= \int{ \frac{1}{4( 1- u)^2} + \frac{1}{4(1 - u)} + \frac{1}{4(1 + u)} + \frac{1}{4( 1 + u)^2} \, du} \\ &= \frac{1}{4} \int{ (1 - u)^{-2} + \frac{1}{1 - u} + \frac{1}{1 + u} + (1 + u)^{-2} \,du} \\ &= \frac{1}{4} \left[ (1 - u)^{-1} - \ln{ | 1 - u | } + \ln{ |1 + u| } - (1 + u)^{-1} \right] + C \\ &= \frac{1}{4} \left[ \frac{1}{1 - \sin{(\theta)} } - \ln{ \left| 1 - \sin{(\theta)} \right| } + \ln{ \left| 1 + \sin{(\theta)} \right| } - \frac{1}{1 + \sin{(\theta)} } \right] + C \end{align*}[/math]
 
With a bit of manipulation, we can get this in a form we can integrate directly:

$$\sec^3(\theta)=\frac{1}{2}\left(\sec^3(\theta)+ \sec^3(\theta) \right)=\frac{1}{2}\left(\sec^3(\theta)+ \sec(\theta)\left(\tan^2(\theta)+1 \right) \right)=$$

$$\frac{1}{2}\left(\sec^3(\theta)+ \sec(\theta)\tan^2(\theta)+\sec(\theta)\frac{\tan(\theta)+ \sec(\theta)}{\tan(\theta)+\sec(\theta)} \right)=$$

$$\frac{1}{2}\left(\left(\sec(\theta)\sec^2(\theta)+\sec(\theta)\tan^2(\theta) \right)+\left(\frac{\sec(\theta)\tan(\theta)+\sec^2(\theta)}{\sec(\theta)+\tan(\theta)} \right) \right)=$$

$$\frac{1}{2}\frac{d}{d\theta}\left(\sec(\theta)\tan(\theta)+\ln\left|\sec(\theta)+\tan(\theta) \right| \right)$$
 
A nice method to evaluate it is by parts , try it !
 
this is my solution using integration by parts. :D

\begin{align*}\displaystyle \int \sec^3\,(\theta)\,d\theta\\ let&u\,=\, \sec(\theta)\\ du&=\, \sec(\theta) \tan(\theta)\\\int dv&=\,\int \sec^2(\theta)\,d\theta\\v&=\,\tan^2(\theta)\\ \sec(\theta)& \tan(\theta)-\int \tan^2(\theta)\,\sec(\theta)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec(\theta)\,(\sec^2(\theta)-1)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec^3(\theta)\,d\theta+\int \sec(\theta)\,d\theta\\ \sec(\theta)&\tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|+C\\\int \sec^3(\theta)& d\theta=\,\sec(\theta) \tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|-\int \sec^3(\theta) d\theta\\2\int \sec^3(\theta)&=\,\sec(\theta) \tan(\theta)-\int \sec^3(\theta)\,d\theta+\ln |\sec(\theta)+\tan(\theta)|\\ \sec^3(\theta)&=\,\frac{1}{2}\sec(\theta)\, \tan(\theta)+\frac{1}{2}\ln |\sec(\theta)+\tan(\theta)|+C\end{align*}
 
Last edited:
While your method is solid, you have several typos which distract from an otherwise good post. Can you spot them?

Also, allow me to suggest that in your use of $\LaTeX$, you precede predefined functions (trigonometric, logarithmic, etc.) with a backslash so that their names are not italicized. I also suggest enclosing function parameters with parentheses so that it is clear just what the parameters are.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K