Integration of velocity to get displacement

AI Thread Summary
To find the displacement of a particle moving along the positive x-axis with velocity v = α√x, the correct approach is to integrate velocity with respect to time, not distance. The equation v = dx/dt implies that displacement is determined by integrating v over time. The user initially attempted to integrate with respect to x, leading to incorrect results. Properly applying the relationship between velocity, displacement, and time is crucial for accurate calculations. Understanding these fundamentals is essential for solving the problem correctly.
rudransh verma
Gold Member
Messages
1,067
Reaction score
96
Homework Statement
A particle at x=0 at time t=0 starts moving along positive x axis with velocity v= alpha## \sqrt x##. Displacement of particle is
Relevant Equations
##v=\frac{dx}{dt}##.
Integration of v= integration of##(alpha \sqrt x)dx##.
But I am getting wrong answer.
 
Physics news on Phys.org
rudransh verma said:
Homework Statement:: A particle at x=0 at time t=0 starts moving along positive x-axis with velocity v= alpha## \sqrt x##. Displacement of particle is
Relevant Equations:: ##v=\frac{dx}{dt}##.

Integration of v= integration of##(alpha \sqrt x)dx##.
But I am getting wrong answer.
You have the wrong integral. Distance is the integral of velocity with respect to time, not with respect to distance.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top