Integration of velocity to get displacement

AI Thread Summary
To find the displacement of a particle moving along the positive x-axis with velocity v = α√x, the correct approach is to integrate velocity with respect to time, not distance. The equation v = dx/dt implies that displacement is determined by integrating v over time. The user initially attempted to integrate with respect to x, leading to incorrect results. Properly applying the relationship between velocity, displacement, and time is crucial for accurate calculations. Understanding these fundamentals is essential for solving the problem correctly.
rudransh verma
Gold Member
Messages
1,067
Reaction score
96
Homework Statement
A particle at x=0 at time t=0 starts moving along positive x axis with velocity v= alpha## \sqrt x##. Displacement of particle is
Relevant Equations
##v=\frac{dx}{dt}##.
Integration of v= integration of##(alpha \sqrt x)dx##.
But I am getting wrong answer.
 
Physics news on Phys.org
rudransh verma said:
Homework Statement:: A particle at x=0 at time t=0 starts moving along positive x-axis with velocity v= alpha## \sqrt x##. Displacement of particle is
Relevant Equations:: ##v=\frac{dx}{dt}##.

Integration of v= integration of##(alpha \sqrt x)dx##.
But I am getting wrong answer.
You have the wrong integral. Distance is the integral of velocity with respect to time, not with respect to distance.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top