(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

[tex]\int\sqrt{X^2+1}dX[/tex]

2. Relevant equations

3. The attempt at a solution

I used the substitution X=tan [tex]\theta[/tex]

So, [tex]dX=(sec^2 \theta[/tex]) d[tex]\theta[/tex]

Substituting in for X, I get:

[tex]\int\sqrt{(tan^2 \theta)+1}(sec^2 \theta) d\theta[/tex]

= [tex]\int\sqrt{(sec^2 \theta)}(sec^2 \theta) d\theta[/tex]

= [tex]\int(sec \theta)(sec^2 \theta) d\theta[/tex]

I then converted secants into cosines:

= [tex]\int\frac{1}{(cos \theta)(cos^2 \theta)} d\theta[/tex]

= [tex]\int\frac{1}{(cos \theta)(1-sin^2 \theta)} d\theta[/tex]

I then used U-sub:

[tex]u=sin \theta[/tex]

[tex]du=cos \theta[/tex]

[tex]\frac{du}{cos \theta}=d\theta[/tex]

= [tex]\int\frac{du}{(cos^2 \theta)(1-u^2)}[/tex]

= [tex]\int\frac{du}{(1-u^2)(1-u^2)}[/tex]

= [tex]\int\frac{du}{(1-2u^2+u^4)}[/tex]

= [tex]\int\frac{du}{(u^4-2u^2+1)}[/tex]

= [tex]\int\frac{du}{u^2(u^2-2)+1}[/tex]

I see this:

= [tex]\int\frac{du}{[u\sqrt{u^2-2}]^2+1}[/tex]

I was hoping I could then use substitution and have the integral of [tex]arctan[/tex], but it looks much more complicated than I thought. Am I anywhere near the right track?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Integration using Trig. Substitution

**Physics Forums | Science Articles, Homework Help, Discussion**