Interpreting the values of slope and intercept coefficients using the CLRM

1daj
Messages
4
Reaction score
0
Hello there,
I'm given the following population regression equation:
PRICE(i) = β(0) + β(1)SQFT(i) + u(i) where the things in brackets are subscripts and SQFT represents the square footage.
A sample of houses is then given with their cooresponding prices and square footage.
I have solved such that β(1) = 108.7832 and β(0) = 11984.83
My question is how exactly to word the interpretation of the slope coefficient B(1) and the intercept coefficient β(0).
What I believe to be the answer is:
β1 means that a unit change in the sample living area of a house, measured in square feet, will result in an estimated $108.78 change in the price of the house and β0 represents the estimated price of the house that is not attributed to the living area size.

Is it accurate to be refer to an individual house in interpretation, as I have done, or should I be referring to houses collectively and refer to the mean sample living area and mean price.

Any help would be greatly appreciated. Thanks
 
Physics news on Phys.org
What you're doing is calculating a rough estimate of how the price of a house depends on the square footage, in a population.

The equation you're using is supposing that it is reasonable to have a non-zero price for a non existing (zero square footage) house, whether this is reasonable or not is up to you to tell - if all prices include the terrain they are standing on it should be ok.

β(1) is the average price per square foot (measured in $/ft²),
β(0) corresponds to the average price of an empty plot. It may however be quite inaccurate, since it is an extrapolation using a model that might not be very accurate.
 
winterfors said:
β(0) corresponds to the average price of an empty plot.

In my opinion it sounds better to describe β(0) as the overhead cost. The term avarage is not applicable for both the eatimates of β(0) and β(1). Think that two different regression lines possible (shall that imply two avarages of the same variable from the same sample?)

These are the values which minimizes the error of the assumed model.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top