But isn't the real solution of the IR problem in pQFT to use the correct asymptotic free states a la Kulish and Faddeev,
P. Kulish and L. Faddeev, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys., 4 (1970), p. 745.
http://dx.doi.org/10.1007/BF01066485
and many other authors like Kibble?
In the standard treatment one uses arguments a la Bloch&Nordsieck, Kinoshita&Lee&Nauenberg and soft-photon/gluon resummation to resolve the IR problems. It's of course far from being rigorous.
I've also no clue, how you can define proper S-matrix elements without adiabatic switching (in both the remote past and the remote present). Forgetting this leads to pretty confusing fights in the literature. See, e.g.,
F. Michler, H. van Hees, D. D. Dietrich, S. Leupold, and C. Greiner, Off-equilibrium photon production during the chiral phase transition, Annals Phys., 336 (2013), p. 331–393.
http://dx.doi.org/10.1016/j.aop.2013.05.021
http://arxiv.org/abs/1310.5019
All this is, of coarse, far from being mathematically rigorous, but maybe it's possible to make it rigorous in the sense of pAQFT?