- 24,488
- 15,057
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/']Urs Schreiber[/URL] said:No, this applies generally, also to interacting theory. In pQFT what changes as one turns on the interaction is that the Wick normal ordred product on observables gets deformed into the "retarded products" (the infinitesimal version of Bogoliubov's formula) and then it's still the vacuum state (or more generally Hadamard state) which serves to send such products of observables to their actual expectation value, which is the corresponding correlator.
Well, the physical interpretation of Heisenberg field operators is highly non-trivial, if not even one can say it basically doesn't exist. That's the reason why one finally only discusses S-matrix elements, which rely on asymptotic free in and out states which have a proper particle interpretation. To make sense of transit states is usually not even considered!
Absolutely. And in the Schrödinger picture a Hilbert space of states needs to be assumed from the outset, while in the Heisenberg picture it is an afterthought, if it exsists at all. What matters in the Heisenberg picture is that we know one state, the vacuum state, given as a positive linear non-degenerate function which sends observables to their expectation value. In optimal situation the GNS construction allows to reconstruct a Hilbert space from this, but not generally (notably not in interacting pQFT).
And that's where it begins to be misleading. First of all the representation of observables as operators on a Fock space is not necessary for the construction of the Wick algebra and second it does not generally exist for QFT on curved backgrounds. Instead what one needs is the Hadamard propagator which allows to construct the Wick algebra of observables and at the same time defines a single state (positive linear non-degenrate functional on observables) on this.
So the trick is that you only need the vacuum state and then reconstruct everything through the N-point functions, defined as "vacuum expectation values"? That's very interesting since it sounds intuitively to be sufficient to define S-matrix elements for definite scattering processes since for asymptotic free states you have a particle interpretation.The Fock space is a Hilbert space, yes. In good cases it happens to exist. In general it does not, and even if it does, it is not actually necessary to do any and all of pQFT.[/QUOTE]