Intuitive explanation of Fanno Flow

  • Thread starter Thread starter Earhart
  • Start date Start date
  • Tags Tags
    Explanation Flow
Click For Summary
Fanno flow demonstrates that friction in compressible gas flows can both accelerate and cool subsonic flow due to the formation of boundary layers. As the boundary layer develops, it creates a virtual narrowing of the duct, resulting in increased velocity and decreased pressure, temperature, and density. This behavior contrasts with supersonic flow, where the Mach-area relationship is reversed, leading to different effects from the same constriction. The intuitive explanation lies in understanding how viscous dissipation influences flow characteristics in varying Mach number regimes. This insight clarifies a common misconception about the effects of friction in fluid dynamics.
Earhart
Messages
2
Reaction score
1
TL;DR
Can anyone explain how is it that friction can both accelerate and cool an adiabatic subsonic gas flow, as it does in Fanno Flow?
OK, I have read all the Fanno flow equations, I understand mass and enthalpy conservation for adiabatic flows give the result that friction causes Mach number go to 1... But I cannot think of a physical explanation for the counter-intuitive fact that friction both accelerates and cools the subsonic flow of a compressible gas. Can someone give an INTUITIVE explanation of how this works? Taking also into account that, for an incompressible adiabatic pipe flow (which should be the limit case for very low Mach numbers), viscous friction work (viscous dissipation) is converted to heat, which raises the fluid temperature, according to the energy equation.
Thanks a lot to anyone who can help me understand this.
 
Engineering news on Phys.org
It's a surprisingly straightforward answer, but the key here is boundary layers. In a real flow, a boundary layer forms, leading to a displacement thickness that grows in the downstream direction. That results in a virtual narrowing of the duct. For a subsonic flow, that means an increase in velocity, which in turn means a decrease in pressure, temperature and density.

Since the Mach-area relationship is reversed for supersonic flow, the opposite happens as a result of the same virtual constriction.
 
  • Like
Likes Lnewqban and Earhart
This is the answer I was looking for, which I could not find in textbooks. As you say, it is surprisingly straightforward. Thank you very much!
 
Thread 'Local pressures in turbocharger housing?'
This is question for fluid mechanics. Static pressure in the exhaust manifold(turbo car engine) is usually 1.2 to 2.5 times higher than the boost pressure(intake manifold pressure).Boost pressure is around 1bar guage pressure(2bar absolute). Can the local static pressure somewhere inside a turbine housing ever be lower than atmospheric pressure, is this possible? here some links where CFD is used...

Similar threads

Replies
0
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
3
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
5K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
8K