Intuitive explanation of Fanno Flow

  • Thread starter Thread starter Earhart
  • Start date Start date
  • Tags Tags
    Explanation Flow
AI Thread Summary
Fanno flow demonstrates that friction in compressible gas flows can both accelerate and cool subsonic flow due to the formation of boundary layers. As the boundary layer develops, it creates a virtual narrowing of the duct, resulting in increased velocity and decreased pressure, temperature, and density. This behavior contrasts with supersonic flow, where the Mach-area relationship is reversed, leading to different effects from the same constriction. The intuitive explanation lies in understanding how viscous dissipation influences flow characteristics in varying Mach number regimes. This insight clarifies a common misconception about the effects of friction in fluid dynamics.
Earhart
Messages
2
Reaction score
1
TL;DR Summary
Can anyone explain how is it that friction can both accelerate and cool an adiabatic subsonic gas flow, as it does in Fanno Flow?
OK, I have read all the Fanno flow equations, I understand mass and enthalpy conservation for adiabatic flows give the result that friction causes Mach number go to 1... But I cannot think of a physical explanation for the counter-intuitive fact that friction both accelerates and cools the subsonic flow of a compressible gas. Can someone give an INTUITIVE explanation of how this works? Taking also into account that, for an incompressible adiabatic pipe flow (which should be the limit case for very low Mach numbers), viscous friction work (viscous dissipation) is converted to heat, which raises the fluid temperature, according to the energy equation.
Thanks a lot to anyone who can help me understand this.
 
Engineering news on Phys.org
It's a surprisingly straightforward answer, but the key here is boundary layers. In a real flow, a boundary layer forms, leading to a displacement thickness that grows in the downstream direction. That results in a virtual narrowing of the duct. For a subsonic flow, that means an increase in velocity, which in turn means a decrease in pressure, temperature and density.

Since the Mach-area relationship is reversed for supersonic flow, the opposite happens as a result of the same virtual constriction.
 
  • Like
Likes Lnewqban and Earhart
This is the answer I was looking for, which I could not find in textbooks. As you say, it is surprisingly straightforward. Thank you very much!
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top