Intuitive explanation of Fanno Flow

  • Thread starter Thread starter Earhart
  • Start date Start date
  • Tags Tags
    Explanation Flow
AI Thread Summary
Fanno flow demonstrates that friction in compressible gas flows can both accelerate and cool subsonic flow due to the formation of boundary layers. As the boundary layer develops, it creates a virtual narrowing of the duct, resulting in increased velocity and decreased pressure, temperature, and density. This behavior contrasts with supersonic flow, where the Mach-area relationship is reversed, leading to different effects from the same constriction. The intuitive explanation lies in understanding how viscous dissipation influences flow characteristics in varying Mach number regimes. This insight clarifies a common misconception about the effects of friction in fluid dynamics.
Earhart
Messages
2
Reaction score
1
TL;DR Summary
Can anyone explain how is it that friction can both accelerate and cool an adiabatic subsonic gas flow, as it does in Fanno Flow?
OK, I have read all the Fanno flow equations, I understand mass and enthalpy conservation for adiabatic flows give the result that friction causes Mach number go to 1... But I cannot think of a physical explanation for the counter-intuitive fact that friction both accelerates and cools the subsonic flow of a compressible gas. Can someone give an INTUITIVE explanation of how this works? Taking also into account that, for an incompressible adiabatic pipe flow (which should be the limit case for very low Mach numbers), viscous friction work (viscous dissipation) is converted to heat, which raises the fluid temperature, according to the energy equation.
Thanks a lot to anyone who can help me understand this.
 
Engineering news on Phys.org
It's a surprisingly straightforward answer, but the key here is boundary layers. In a real flow, a boundary layer forms, leading to a displacement thickness that grows in the downstream direction. That results in a virtual narrowing of the duct. For a subsonic flow, that means an increase in velocity, which in turn means a decrease in pressure, temperature and density.

Since the Mach-area relationship is reversed for supersonic flow, the opposite happens as a result of the same virtual constriction.
 
  • Like
Likes Lnewqban and Earhart
This is the answer I was looking for, which I could not find in textbooks. As you say, it is surprisingly straightforward. Thank you very much!
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top