Invariants of the stress tensor (von Mises yield criterion)

AI Thread Summary
The discussion centers on the von Mises yield criterion and the confusion surrounding the second stress invariant's sign in two equations. Participants note that the I invariants are derived from the characteristic polynomial of the stress tensor, which can lead to differing sign conventions based on the equation's formulation. Clarification is provided that J2 and I2 should not be confused, emphasizing the importance of distinguishing between them. The equations presented highlight the mathematical relationship between the stress components and their contributions to the invariant. Understanding these nuances is crucial for accurately applying the yield criterion in material science.
balasekar1005
Messages
1
Reaction score
0
TL;DR Summary
I see different versions of the second invariant of the cauchy stress tensor.
Hello all,

I am trying to understand the von Mises yield criterion and stumbled across two equations for the second stress invariant. Although the only difference is a difference in signs (negative and positive), it has been bothering me. Attached are the two versions. Which one is correct and if both are correct, why is there a change in sign?

Thank you,
Bala
 

Attachments

  • wiki.PNG
    wiki.PNG
    297 bytes · Views: 234
  • othersource.PNG
    othersource.PNG
    311 bytes · Views: 239
Engineering news on Phys.org
I have not done theoretical stuff in a long time, so take what I say with a grain of salt ...

The I invariants are the constants of the characteristic polynomial of the stress tensor used to determine the principal stresses so that you can define them to within a sign depending on how you choose to write the equation. What I cannot remember, is if there is a sign convention. Since you are finding both, my guess is that there is not one.

BTW, make sure that you do not confuse J2 with I2.
 
Here's what I've found in one of the books:
$$II_{\sigma}=\frac{1}{2} \left[ tr(\sigma^{2})-(tr \sigma)^2 \right]=- \sigma_{11} \sigma_{22}+ \sigma_{12} \sigma_{21} - \sigma_{11} \sigma_{33} + \sigma_{13} \sigma_{31} - \sigma_{22} \sigma_{33} + \sigma_{23} \sigma_{32}$$
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly

Similar threads

Back
Top