- #1

- 587

- 10

**Inverse Laplace transform**

[tex]\mathcal{L}^{-1}[F(p)]=\frac{1}{2\pi i}\int^{c+i\infty}_{c-i\infty}F(s)e^{st}dp=f(t)[/tex]

Question if we integrate along a straight line in complex plane where axis are [tex]Re(p)[/tex], [tex]Im(p)[/tex], why we integrate from [tex]c-i \ínfty[/tex] to [tex]c+\infty[/tex]? So my question is, because [tex]Im(p)[/tex] are also real numbers why we integrate from [tex]c-i\infty[/tex] to [tex]c+i\infty[/tex].

[tex]\mathcal{L}^{-1}[F(p)]=\frac{1}{2\pi i}\int^{c+i\infty}_{c-i\infty}F(s)e^{st}dp=f(t)[/tex]

Question if we integrate along a straight line in complex plane where axis are [tex]Re(p)[/tex], [tex]Im(p)[/tex], why we integrate from [tex]c-i \ínfty[/tex] to [tex]c+\infty[/tex]? So my question is, because [tex]Im(p)[/tex] are also real numbers why we integrate from [tex]c-i\infty[/tex] to [tex]c+i\infty[/tex].

Last edited: