MHB Is a Differentiable Function Always Limited on a Closed or Open Interval?

  • Thread starter Thread starter hopelesss
  • Start date Start date
Click For Summary
A differentiable function on a closed interval [x1, x2] is bounded due to the compactness of the image of a continuous map. For an open interval (x1, x2), if the derivative f' is bounded, the mean value theorem can be applied to show that the function f is also bounded. The discussion emphasizes the relationship between differentiability, continuity, and boundedness. There is a mention of the need for clarity in terminology, specifically regarding the terms "bounded," "restricted," and "limited." The overall conclusion is that both scenarios lead to the function being bounded under the given conditions.
hopelesss
Messages
15
Reaction score
0
A function f is called restricted ( "bounded") on an interval I if there
is a constant K such that | f (x) | ≤ K for all x ∈ I.
(1) Let f be a differentiable function on a closed interval [x1, x2], where x1 and x2
are real numbers such that x1 < x2. Justify that f then is limited.
(2) Let f be a differentiable function in an open interval (x1, x2), where x1 and x2
are real numbers such that x1 < x2. Show that if the derivative f' is
limited in (X1, x2), then f is also limited.

can someone help with this?
 
Physics news on Phys.org
comma said:
A function f is called restricted ( "bounded") on an interval I if there
is a constant K such that | f (x) | ≤ K for all x ∈ I.
(1) Let f be a differentiable function on a closed interval [x1, x2], where x1 and x2
are real numbers such that x1 < x2. Justify that f then is limited.
(2) Let f be a differentiable function in an open interval (x1, x2), where x1 and x2
are real numbers such that x1 < x2. Show that if the derivative f' is
limited in (X1, x2), then f is also limited.

can someone help with this?
Problem (1) can be solved as follows: It is a general fact that the image of a compact set in a topological space under a continuous map is again compact. More precisely, if $f:X\to Y$ is a continuous map, and $X$ is compact, then $f(X)$ is also compact. Now we have a differentiable map $f:[x_1, x_2]\to \mathbf R$. Since diifferentiable maps are in particular continuous, we have $f([x_1, x_2])$ is a compact subspace of $\mathbf R$. Now a compact subspace of $\mathbf R$ is bounded, and thus we have $f$ is bounded.

(In case you do not know the basics of topology, there is a way to do it in a more elementary way. I will post the more elementary solution in case you need it.)

For problem 2), are you acquainted with the mean value theorem for differentiable maps?
 
thanks for your reply.
1) I had to turn up topology in the book's index and its chapter 10.
We did not have that chapter yet.

2) yes we learned about the mean value theorem a few weeks ago. i see in my notebook in did many examples using this theorem. But it was more like ''show that sin x <x for all 0''.
 
comma said:
thanks for your reply.
1) I had to turn up topology in the book's index and its chapter 10.
We did not have that chapter yet.

2) yes we learned about the mean value theorem a few weeks ago. i see in my notebook in did many examples using this theorem. But it was more like ''show that sin x <x for all 0''.

I will write down an elementary solution for (1) in some time. For (2) you can proceed like this:

Let $M$ be such that $|f'(x)|<M$ for all $x\in (x_1, x_2)$. Such an $M$ can be found because $f'$ is assumed to be bounded in $(x_1 ,x_2)$. Now if $y_1, y_2\in (x_1, x_2)$ with $y_1< y_2$, we have, by the mean value theorem, that there is a $y\in (y_1, y_2)$ such that
$$f'(y)=\frac{f(y_2)-f(y_1)}{y_2-y_1}$$
Thus
$$\left|\frac{f(y_2)-f(y_1)}{y_2-y_1}\right|\leq M$$
giving
$$|f(y_2)-f(y_1)|\leq M(y_2-y_1) \leq M(x_2-x_1)$$
Now can you see why $f$ is bounded in $(x_1, x_2)$?
 
It is a little strange that you specifically define "bounded" and "restricted" but then ask about a function being "limited" which you did not define.