Is a Differentiable Function Always Limited on a Closed or Open Interval?

  • Context: MHB 
  • Thread starter Thread starter hopelesss
  • Start date Start date
Click For Summary
SUMMARY

A differentiable function f on a closed interval [x1, x2] is always bounded due to the compactness of the image of a continuous map. Specifically, since differentiable functions are continuous, the image f([x1, x2]) is compact in ℝ, which implies it is bounded. For an open interval (x1, x2), if the derivative f' is bounded, the Mean Value Theorem guarantees that f is also bounded within that interval. This establishes that differentiability and bounded derivatives lead to bounded functions.

PREREQUISITES
  • Understanding of differentiable functions
  • Familiarity with the Mean Value Theorem
  • Basic concepts of topology, particularly compactness
  • Knowledge of bounded functions and their definitions
NEXT STEPS
  • Study the properties of compact sets in topology
  • Review the Mean Value Theorem and its applications
  • Explore the relationship between continuity and differentiability
  • Investigate examples of bounded and unbounded functions
USEFUL FOR

Students of calculus, mathematicians exploring function properties, and educators teaching concepts of differentiability and boundedness.

hopelesss
Messages
15
Reaction score
0
A function f is called restricted ( "bounded") on an interval I if there
is a constant K such that | f (x) | ≤ K for all x ∈ I.
(1) Let f be a differentiable function on a closed interval [x1, x2], where x1 and x2
are real numbers such that x1 < x2. Justify that f then is limited.
(2) Let f be a differentiable function in an open interval (x1, x2), where x1 and x2
are real numbers such that x1 < x2. Show that if the derivative f' is
limited in (X1, x2), then f is also limited.

can someone help with this?
 
Physics news on Phys.org
comma said:
A function f is called restricted ( "bounded") on an interval I if there
is a constant K such that | f (x) | ≤ K for all x ∈ I.
(1) Let f be a differentiable function on a closed interval [x1, x2], where x1 and x2
are real numbers such that x1 < x2. Justify that f then is limited.
(2) Let f be a differentiable function in an open interval (x1, x2), where x1 and x2
are real numbers such that x1 < x2. Show that if the derivative f' is
limited in (X1, x2), then f is also limited.

can someone help with this?
Problem (1) can be solved as follows: It is a general fact that the image of a compact set in a topological space under a continuous map is again compact. More precisely, if $f:X\to Y$ is a continuous map, and $X$ is compact, then $f(X)$ is also compact. Now we have a differentiable map $f:[x_1, x_2]\to \mathbf R$. Since diifferentiable maps are in particular continuous, we have $f([x_1, x_2])$ is a compact subspace of $\mathbf R$. Now a compact subspace of $\mathbf R$ is bounded, and thus we have $f$ is bounded.

(In case you do not know the basics of topology, there is a way to do it in a more elementary way. I will post the more elementary solution in case you need it.)

For problem 2), are you acquainted with the mean value theorem for differentiable maps?
 
thanks for your reply.
1) I had to turn up topology in the book's index and its chapter 10.
We did not have that chapter yet.

2) yes we learned about the mean value theorem a few weeks ago. i see in my notebook in did many examples using this theorem. But it was more like ''show that sin x <x for all 0''.
 
comma said:
thanks for your reply.
1) I had to turn up topology in the book's index and its chapter 10.
We did not have that chapter yet.

2) yes we learned about the mean value theorem a few weeks ago. i see in my notebook in did many examples using this theorem. But it was more like ''show that sin x <x for all 0''.

I will write down an elementary solution for (1) in some time. For (2) you can proceed like this:

Let $M$ be such that $|f'(x)|<M$ for all $x\in (x_1, x_2)$. Such an $M$ can be found because $f'$ is assumed to be bounded in $(x_1 ,x_2)$. Now if $y_1, y_2\in (x_1, x_2)$ with $y_1< y_2$, we have, by the mean value theorem, that there is a $y\in (y_1, y_2)$ such that
$$f'(y)=\frac{f(y_2)-f(y_1)}{y_2-y_1}$$
Thus
$$\left|\frac{f(y_2)-f(y_1)}{y_2-y_1}\right|\leq M$$
giving
$$|f(y_2)-f(y_1)|\leq M(y_2-y_1) \leq M(x_2-x_1)$$
Now can you see why $f$ is bounded in $(x_1, x_2)$?
 
It is a little strange that you specifically define "bounded" and "restricted" but then ask about a function being "limited" which you did not define.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 46 ·
2
Replies
46
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
2K