homeo: a tube T is a tubular nbhd of the manifold M, so you can think of it as a (closed) nbhd of the zero sectioin of the normal bundle N that intersects each fiber in a closed disk.
lavinia, how about this: Pick a fiber metric on TN. Use this to define a splitting of TN into a vertical bundle V (isomorphic to N) and a horizontal bundle H (isomorphic to TM). This induces a similar splitting of T(T). Now, an orientation of T as a manifold would induce an orientation of N (as a vector bundle), but we know that the normal bundle is not always orientable, so the tube cannot always be orientable. In fact, it is so iff M and its normal bundle are thus.