See correction above. With the correction, I agree.
Take Schwarzschild spacetime in Schwarzschild coordinates. In the coordinate basis, we have ##e_0 = (1, 0, 0, 0)##. So for a general (1, 1) tensor ##T##, ##T ( e_0 )##, in matrix multiplication form, looks like:
$$
\begin{bmatrix}
T_{00} & T_{01} & T_{02} & T_{03} \\
T_{10} & T_{11} & T_{12} & T_{13} \\
T_{20} & T_{21} & T_{22} & T_{23} \\
T_{30} & T_{31} & T_{32} & T_{33}
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}
=
\begin{bmatrix}
T_{00} \\
T_{10} \\
T_{20} \\
T_{30}
\end{bmatrix}
$$
Or, in the notation
@Orodruin used in post #13, we have ##\left( e_0 \right)^\nu = \delta^\nu_0##, so ##\left[ T ( e_0 ) \right]^\nu = T_0{}^\nu##.
But in a non-coordinate, orthonormal basis, we have
$$
\hat{e}_0 = \left( \frac{1}{\sqrt{1 - 2M / r}}, 0, 0, 0 \right)
$$
So ##T ( \hat{e}_0 )## in matrix multiplication form now looks like this:
$$
\begin{bmatrix}
T_{00} & T_{01} & T_{02} & T_{03} \\
T_{10} & T_{11} & T_{12} & T_{13} \\
T_{20} & T_{21} & T_{22} & T_{23} \\
T_{30} & T_{31} & T_{32} & T_{33}
\end{bmatrix}
\begin{bmatrix}
\frac{1}{\sqrt{1 - 2M / r}} \\
0 \\
0 \\
0
\end{bmatrix}
= \frac{1}{\sqrt{1 - 2M / r}}
\begin{bmatrix}
T_{00} \\
T_{10} \\
T_{20} \\
T_{30}
\end{bmatrix}
$$
In other words, we have ##\left[ T ( \hat{e}_0 ) \right]^\nu \neq T_0{}^\nu##. The extra factor in ##\hat{e}_0## makes the two unequal.