MHB Is H an abelian group of order 9 and is it isomorphic to Z9 or Z3 x Z3?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The group H, defined by matrices with elements from Z3, is confirmed to be an abelian group of order 9. It is established that H is isomorphic to Z3 x Z3 rather than Z9. The solutions provided by participants jakncoke and Sudharaka demonstrate the necessary group properties and structure. The discussion emphasizes the importance of understanding group isomorphisms in the context of finite abelian groups. Overall, H's structure aligns with the characteristics of Z3 x Z3.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: Let $\displaystyle H=\left\{\left.\begin{bmatrix} 1 & a & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\right| \,a,b\in\mathbb{Z}_3\right\}$. Show that $H$ is an abelian group of order 9. Is $H\cong \mathbb{Z}_9$ or is $H\cong \mathbb{Z}_3\oplus\mathbb{Z}_3$?

(In this problem, $\cong$ means "isomorphic to".)

-----

 
Physics news on Phys.org
This week's question was correctly answered by jakncoke and Sudharaka. You can find Sudharaka's solution here:

Take any two elements \(\begin{bmatrix} 1 & a_1 & b_1\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}, \begin{bmatrix} 1 & a_2 & b_2\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\in H\). Then,

\[\begin{bmatrix} 1 & a_1 & b_1\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}.\begin{bmatrix} 1 & a_2 & b_2\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & a_1+a_2 & b_1+b_2\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\]

Since, \(a_1+a_2\) and \(b_1+b_2\) should be congruent to \(0, 1\) or \(2\) under modulo \(3\) we have, \(a_1+a_2,\,b_1+b_2\in\mathbb{Z}_3\). Therefore,

\[\begin{bmatrix} 1 & a_1 & b_1\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}.\begin{bmatrix} 1 & a_2 & b_2\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\in H\]

Hence \(H\) is closed under matrix multiplication.

Since matrix multiplication is associative \(H\) under matrix multiplication also satisfies associativity.

Note that for each \(\begin{bmatrix} 1 & a & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\in H\) we get,

\[\begin{bmatrix} 1 & a & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}.\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & a_1 & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\]

Therefore the identity element of \(H\) is, \(\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\).

Also for each, \(\begin{bmatrix} 1 & a & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\in H\) we have,

\[\begin{bmatrix} 1 & a & b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}.\begin{bmatrix} 1 & -a & -b\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\]

Therefore an inverse exists for each element of \(H\).

Finally,

\[\begin{bmatrix} 1 & a_1 & b_1\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}.\begin{bmatrix} 1 & a_2 & b_2\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & a_1+a_2 & b_1+b_2\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & a_2 & b_2\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}.\begin{bmatrix} 1 & a_1 & b_1\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\]

Hence \(H\) is Abelian.

Since we have three choices for both \(a\) and \(b\) (0, 1 and 2) there are \(3\times 3=9\) elements in the group \(H\). By the Fundamental Theorem of Finite Abelian Groups we have \(H\cong \mathbb{Z}_3\oplus\mathbb{Z}_3\).