High School Is hοh Monotonic If h Is Continuous?

Click For Summary
SUMMARY

The discussion centers on the monotonicity of the composition of a function h with itself, denoted as hοh, particularly when h is continuous. It is established that if hοh is monotonic, it does not necessarily imply that h is monotonic. Counterexamples are provided, including a specific case where h is defined piecewise with a smooth function. The conversation also explores conditions under which h may be strictly monotonic if hοh is strictly monotonic, leading to a tentative proof based on the properties of continuous functions.

PREREQUISITES
  • Understanding of function composition and monotonicity
  • Familiarity with continuous and smooth functions
  • Knowledge of the Intermediate Value Theorem
  • Basic concepts of injective functions and their properties
NEXT STEPS
  • Study the properties of continuous functions and their implications on monotonicity
  • Explore function composition in depth, focusing on monotonicity
  • Learn about injective functions and their role in proving monotonicity
  • Investigate counterexamples in mathematical proofs to understand limitations
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in the properties of continuous functions and their compositions.

anachin6000
Messages
50
Reaction score
3
So, it is known and easy to prove that if you have f : D -> G and g : G -> B then
-if both f and g have the same monotony => fοg is increasing
-if f and g have different monotony => fοg is decreasing
But the reciprocal of this is not always true (easy to prove with a contradicting example).
Though, it came to my mind that, if we have a function h : D -> D, a kind of of reciprocal might be valid for hοh.
I think that if hοh is monotonic it results that h is either decreasing or increasing, but I am not sure if it is true or not, neither how to prove or disprove it. This is actually my question, is it true and how you prove that?
 
Physics news on Phys.org
anachin6000 said:
So, it is known and easy to prove that if you have f : D -> G and g : G -> B then
-if both f and g have the same monotony => fοg is increasing
-if f and g have different monotony => fοg is decreasing
But the reciprocal of this is not always true (easy to prove with a contradicting example).
Though, it came to my mind that, if we have a function h : D -> D, a kind of of reciprocal might be valid for hοh.
I think that if hοh is monotonic it results that h is either decreasing or increasing, but I am not sure if it is true or not, neither how to prove or disprove it. This is actually my question, is it true and how you prove that?
Consider h, a real, not identically zero, smooth function with support in [3,4] and |h(x)|≤1 for all x ∈ ℝ.
 
  • Like
Likes anachin6000
This being said, if you add the condition that h is continuously differentiable, I think you can prove that if hοh is a monotone function while h is not, then hοh must be constant.

EDIT: continuity of h may well be sufficient.

EDIT2: no, not true, sorry.

Counter example:
Define h as follows:
for x≤0, f(x)=-x²
for x≥0, f(x)=g(x) where g is a non constant smooth function with support in [3,4] and range in [0,1].

Then, for x≤0, hoh(x)=h(-x²)=-x4.
For x>0, hoh(x)=h(h(x))=0.
 
Last edited:
  • Like
Likes anachin6000
Start with r1<r2 and track it through. I think that you will find that h monotonic => h(h) monotonic increasing.

But h(h) being monotonic implies nothing about monotonicity of h. Consider the function h(r) = r if r is rational; h(r)=-r otherwise.
 
FactChecker said:
Start with r1<r2 and track it through. I think that you will find that h monotonic => h(h) monotonic increasing.

But h(h) being monotonic implies nothing about monotonicity of h. Consider the function h(r) = r if r is rational; h(r)=-r otherwise.
Correct. If h is not continous, then h(h) being monotone implies nothing about monotonicity of h.

Although that was not what the OP asked for, I wondered about what happens if h is continuous.
As shown in posts #2 and #3, then also h(h) can be monotone without h being monotone. But the following seems true for continuous h:
On intervals where h(h) is strictly monotone, h will also be strictly monotone.

Proof (tentative):
Let's assume, wlog, that f=h(h) is a monotone increasing function.

1) Let's note that an injective continuous function on an interval is strictly monotone.

2) Let [a,b] be an interval in ℝ where f is strictly increasing.
For x,y ∈ [a,b], x≠y, h(x)≠h(y), for else f(x)=f(y), and f would be constant on [x,y]. It follows from 1) that h is strictly monotone on [a,b].

3) Now let's assume that we have an interval [a,b] where f is strictly increasing, and let's fix (again wlog) on the case where h is also strictly increasing on [a,b].
Take any c>b. If h(c)<h(b), the intermediate value theorem implies that there exist an x<b and an y>b such that h(x)=h(y). But then f would be constant on [x,y], contradicting the hypothesis that f is strictly increasing in [a,b].
Hence, ∀c>b, h(c)≥h(b).

4) Let [c,d] be another interval where f is strictly increasing, with c>b.
From 2) we know that h will be strictly monotone on [c,d]. From 3) we know that h(c)≥h(b), h(d)≥h(b).
If h were strictly decreasing on [c,d], h(c)>h(d)≥h(b). The intermediate value theorem then implies that ∃x ∈ [b,c[ satisfying h(x)=h(d).
That makes f constant on [x,d], a contradiction with f being strictly increasing on [c,d].
Hence h is also strictly increasing on [c,d].

Probably this proof can be made shorter. :oldsmile:
 
Last edited:
  • Like
Likes FactChecker and anachin6000

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K