Is (-infinity, b) an event for any real number b?

Click For Summary

Homework Help Overview

The discussion revolves around the concept of events in the context of a sigma-algebra, specifically examining whether the interval (-infinity, b) qualifies as an event given that all intervals of the form (-infinity, b] are considered events. Participants are tasked with demonstrating this relationship using the properties of sigma-algebras.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the conditions required for a set to be an event within a sigma-algebra, specifically focusing on the first two conditions and how they relate to the interval (-infinity, b). There is discussion on expressing (-infinity, b) as a countable union of events and the implications of the complement of the interval.

Discussion Status

The discussion is active, with participants sharing their reasoning and questioning the application of the sigma-algebra properties. Some have provided insights on how to express the open interval as a union of events, while others are seeking clarification on proving the second condition regarding complements.

Contextual Notes

Participants are working under the assumption that the sample space consists of all real numbers, and they are required to adhere to the properties of sigma-algebras without providing complete solutions.

kolua
Messages
69
Reaction score
3

Homework Statement


Suppose that the sample space is the set of all real numbers and that every interval of the form (-infinity, b] for any real number b is an event. Show that for any real number b (-infinity, b) must also be an event.

The Attempt at a Solution


use the 3 conditions required for sigma-algebra.
1. S is an event.
2. If A is an event then Acis also an event
3. if Aa, A2... is a countable collection of events, the union of such events is an event.

for the first condition, s is the subset of itself, so it's an event
for the second condition, I am not sure how to prove that [b, infinity) is also an event
 
Physics news on Phys.org
A countable union of events is an event. Can you think of a way of expressing the open interval ##(-\infty,b)## as a countable union of events ##\bigcup_{i=1}^\infty (-\infty,a_i]##? How might you choose the ##a_i##?
 
andrewkirk said:
A countable union of events is an event. Can you think of a way of expressing the open interval ##(-\infty,b)## as a countable union of events ##\bigcup_{i=1}^\infty (-\infty,a_i]##? How might you choose the ##a_i##?
Yes, I know how to prove the third condition. ai=b-1/n as a goes to infinity. But what about the second condition? how should I prove that Ac is an event? Ac=[b, infinity)
 
kolua said:
Yes, I know how to prove the third condition. ai=b-1/n as a goes to infinity. But what about the second condition? how should I prove that Ac is an event? Ac=[b, infinity)

For integer ##n > 0## the set ##(-\infty,b- \frac{1}{n}]^c = (b-\frac{1}{n},\infty)## is an event. We have
$$ [b ,\infty) = \bigcap_{n=1}^{\infty} \left(b - \frac{1}{n}, \infty \right).$$
 
Last edited:
kolua said:
Yes, I know how to prove the third condition. ai=b-1/n as a goes to infinity. But what about the second condition? how should I prove that Ac is an event? Ac=[b, infinity)
You don't have to prove the second condition.

The conditions tell us how to construct the sigma algebra generated by a collection of sets. Given a collection C of sets, the sigma algebra generated by that collection is the smallest collection of sets that (1) contains C and (2) satisfies those three properties.

What you're asked to do is, given that C is the set of intervals ##(-\infty,b]## for ##b\in\mathbb R##, show that for any ##b\in\mathbb R##, the interval ##(-\infty, b)## is in S, the sigma algebra generated by C.

To do that we only need to use property 3. We already know that ##C\subseteq S##. Property 3 shows that it follows from that that for any ##b\in\mathbb R##, the interval ##(-\infty, b)## is also in S.
 

Similar threads

Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K