Is It Binomial or Poisson Distribution for Element Damages in Large Systems?

zezima1
Messages
119
Reaction score
0
I might need you guys to help me see how this proces, will be distributed:

Suppose we have a large amount of elements N(≈1012). I'm simulating a system where I for each iteration damage a random element. If an element gets damaged its damagecounter goes up 1.
So say I pick element number 100123 on the first iteration. Its damagecounter will now count +1 whilst the damagecounters of the other elements in the system will be 0.

I want to write an expression for the probability that a specific element acquires k damages in t iterations. Here are my steps in deriving an expression:

1) The probability for a specific element to get damaged must be 1/N.

2) Thus the probability that a specific element gets k damages after t iterations must be:

p(x=k) = K(t,k) * (1/N)k * (1-1/N)t-k

where K(t,k) denotes the binomial coefficient.

Now, I want to find the total probability for an element to have acquired k damages during our t iterations. Thus I multiply by N and end up with:

p(x=k) = N * K(t,k) * (1/N)k * (1-1/N)t-k

Now first of all, I want to know: Would this expression be correct or am I making any mistakes/illegal assumptions in the derivation?

Second, my model appears to follow a poisson distribution, when I plot the amount of elements with damage 1->10 versus time. Does that fit with this theory? I can't quite see if that is a good thing or not?
 
Last edited:
Physics news on Phys.org
I won't comment on your derivation.

However, in general, Poisson distribution is a good approximation for the binomial for large N and Np fixed.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top