yungman said:
I am loss after half way. I'll wait for more equation and drawing before I can continue. I still would like to know how you measure the 1V drop due to internal resistance in your transformer. I need to see the path how you measure the different voltages in the non conservative case you present.
I am making a first attempt to make sense of the E components:
\nabla \times \vec E_e =-\frac{\partial \vec B_e}{\partial t} \;\hbox { to get Ee from Be.}
\nabla \times \vec B_i = \mu_0\sigma_{Cu} \vec E_e + \mu_0\epsilon\frac{\partial \vec E_e}{\partial t} \;\hbox { to get Bi from Ee.}
\nabla \times \vec E_i =-\frac {\partial \vec B_i}{\partial t} \;\hbox { to get Ei from Bi}
You're on the right track. I type slowly & long posts take a lot of time. I gave a xfmr example, but my explanation was eventually focused on a loop immersed in an ac B field, like that of an antenna receiving rf. A xfmr has one more thing going on.
A loop immersed in an rf B field in free space is subjected to induction. But said loop has an area which receives a specific amount of radiated power. This is induction w/ constant power. In the open circuit state, v = -N*d(phi)/dt. Also, phi = Ac*B, where Ac is the cross-sectional area of the loop, & B is mag flux density.
When the loop is open, Be, the external mag field, is related to the loop voltage Vloop, as follows. Vrms = Bpk/(4.443*f*Ac*N), where f is frequency, N is turns, per Faraday's law, FL. But if we close the loop in a high value of resistance R, we get current.
This current generates a field which opposes Be, so we call it Bi. I covered the rest previously. An equilibrium is reached when the loop resistance R is low enough so that the Bi cancels Be. Lowering R further does not increase the current. The voltage reduces as R is lowered, i.e. loop voltage decreases w/ decreasing R & increasing current.
It has to be this way per conservation of energy law, CEL. This is a constant power condition. The loop receives a limited amount of rf power, & the loop power cannot exceed the incident power per CEL. Hence Bi cancels Bi when R is low enough.
Now the xfmr is examined. When open secondary is measured, 120V appears at the terminals. Let's use these parameters for the xfmr including core. Vrms = 120V, Ac = (5cm X 5cm) 25 cm^2, f = 60 Hz, N = 120 turns both pri & sec, lc = core path length = 50 cm, Rsec = 0.1 ohm, & mu_r = relative permeability of core including incidental gap = 1000.
The B field in the core computes to 1.501 tesla per FL (15,010 gauss, a typical value for a grain oriented silicon steel material). To get H, we divide by mu, where mu = mu0*mu_r. Since NI = integral H*dlc, we get a magnetizing current of 0.498 amp, or 0.5A rounding off.
So we have a xfmr w/ sec open, 120V rms, & 0.5A magnetizing current, Imag. What happens when we connect the 11.9 ohm heater load across the secondary. The 0.1 ohm sec winding resistance is in series w/ the 11.9 ohm heater, for a total of 12.0 ohm, & the sec current, Isec = 10A. The terminal voltage drops by 1.0V to 119V rms.
The 1.5 tesla is the core when open is Be in this case. It requires an H to sustain it, w/ Imag of 0.5A. If the sec is loaded, that load current, induced by Be/Ee, tends to produce a mag flux, or "mmf", opposite in polarity to Be. This is Bi. Only 0.5A of counter-mmf will cancel the 1.5 tesla of Be. So where does the 120V come from, as you just asked?
A xfmr is not operating under a constant power condition like a loop in free space. A xfmr operates w/ constant voltage. The primary is connected across a good strong well-regulated constant voltage source, CVS. The power company goes through great effort to insure the voltage at our outlet is 120V rms.
As soon as load current is drawn at the sec, the counter-mmf produces Bi cancelling Be, resulting in a drop in terminal voltage. But the xfme primary is connected to a CVS. Said CVS then outputs an increase in current which counters the counter-mmf. The additional primary current provides "counter-counter-mmf". Just as the counter-mmf (or "Bi" if you prefer) resulted in counter-emf & a drop in voltage, the counter-counter-mmf produces a counter-counter-emf & an increase in voltage.
As long as the primary is excited by a good solid CVS which has the power capability to meet the load demands, said CVS will offer any current necessary to keep Vpri at 120V rms. Thus the cancellation of Be by Bi, is countered by increased Ipri.
But the mag flux still cannot enter the Cu sec winding to any large degree. Since the sec Cu resistance & the heater load are in series, their current is identical. Hence the 120V is divided between the 0.1 ohm & 11.9 ohm. When current exists in 2 different resistances in series, the higher resistance material incurs more electron to latiice collisions, & more accumulated charges. The charges provide their E field, Ec. When all 4 components of E are evaluated, we get 1.0V in the Cu sec, & 119V in the heater load.
In a nutshell, the CVS sets up a core flux, which sets up a sec E field & voltage. When loaded, the sec current produces Bi/Ei which cancels the Be/Ee. The CVS then forces an equilibrium condition by providing just enough primary current so thet Vloop = 120V. It's a CVS, that is what it does. Lattice collisions take place more frequently in the higher resistance medium. But being in series the current in each of the 2 media must be equal. Hence charges build up & the E field due to charges, Ec, adds or subtracts to/from Ee, Ei, & counter-Ee.
Dr. Lewin has a good paper on Ec which I'll dig up & post. Did this help?
Claude