Is Moment of Inertia Dependent on Surface Movement Away from Axis?

Click For Summary
SUMMARY

The moment of inertia is indeed dependent on how the surface moves away from the axis, as confirmed by the calculations of moments for various shapes. The discussion highlights that for the given shapes, the moments of inertia about the x and y axes are equal (I_x = I_y), with specific values calculated as I_x = I_y = 0.76032a^4 mm^4. The principal axes' orientation is determined by the angle σ, calculated as -45 degrees, indicating that the x' axis is the minimum moment of inertia while the y' axis is the maximum. This relationship is crucial for understanding the distribution of mass and its effect on rotational dynamics.

PREREQUISITES
  • Understanding of moment of inertia concepts
  • Familiarity with centroid calculations
  • Knowledge of principal axes in mechanics
  • Proficiency in mathematical calculations involving integrals and summations
NEXT STEPS
  • Study the derivation of moment of inertia for various geometric shapes
  • Learn about the parallel axis theorem and its applications
  • Explore the implications of principal moments of inertia in structural engineering
  • Investigate the relationship between mass distribution and rotational dynamics
USEFUL FOR

Students and professionals in mechanical engineering, physics, and structural analysis who are interested in understanding the principles of moment of inertia and its applications in real-world scenarios.

Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
Find the angle of the principal axes where ##x'## and ##y'## are the principal axes.
Relevant Equations
Last figure of the solution
Statement figure:
1.png


My attempt at a solution:
FIGURE 1 ##\rightarrow A=a^2##
2.png

CG ##\rightarrow \overline{x}=-a/2, y=-a/2##
$$\overline{Ix}_1=\dfrac{bh^3}{12}=\overline{Iy}_1=\dfrac{a^4}{12}$$
$$Ix_1=\overline{Ix}_1+\overline{y}^2A=\dfrac{a^4}{12}+\dfrac{a^4}{4}=\dfrac13 a^4\, \textrm{mm}^4=Iy_1$$
$$\overline{Ixy}_1=0\, \textrm{mm}^4\rightarrow Ixy_1=\dfrac{a^4}{4}$$

FIGURE 2 ##\rightarrow A=\dfrac{\pi a^2}{2}##
3.png

CG ##\rightarrow \overline{x}=0, \overline{y}=\dfrac{4\pi}3a##
$$Ix_2=Iy_2=\dfrac{\pi}8a^4\, \textrm{mm}^4,\,\, \overline{Ixy}=0\rightarrow Ixy=0+0\cdot \overline{y}A=0\, \textrm{mm}^4$$
$$Ix=\sum Ix_i=0,76032a^4\, \textrm{mm}^4$$
$$Iy=\sum Iy_i=0,76032a^4 \, \textrm{mm}^4$$
$$Ixy=\sum Ixy_i=\dfrac 14a^2$$
$$\boxed{\sigma =\dfrac12 \arctan \left( \dfrac{-2Ixy}{Ix-Iy}\right)=\dfrac12 \arctan (-\infty)=-45^\circ}$$

4.png

If you could tell me if it's ok you would do me a big favor. thank you very much!

The moment of inertia depended on how the surface moves away from the axis, right? Because if so maybe it does make sense that I got the two equal moments (##x## and ##y##), doesn't it?
 
Physics news on Phys.org
Your work for obtaining ##I_x## and ##I_y## looks correct. However, when I calculate ##\pi/8 + 1/3##, I get 0.726 instead of 0.760. But, the important thing for this problem is that ##I_x = I_y##. Many books use the notation ##I_{xx}## and ##I_{yy}## for your ##I_x## and ##I_y##. Also, many books define ##I_{xy}## to have the opposite sign of your definition. But, I've seen both definitions used.

The question asks for the angles of orientation of the principal ##x'## and ##y'## axes. You calculated one angle equal to -45o. So, I think you should include some comments regarding how this calculated angle relates to the orientation of the ##x'## and ##y'## axes.

Guillem_dlc said:
The moment of inertia depended on how the surface moves away from the axis, right? Because if so maybe it does make sense that I got the two equal moments (##x## and ##y##), doesn't it?

Yes, if you study how the mass is distributed about the ##x## and ##y## axes for this problem, then I think you can see that ##I_{xx}## should equal ##I_{yy}## without doing any calculation.
 
  • Like
Likes   Reactions: Lnewqban
TSny said:
Your work for obtaining ##I_x## and ##I_y## looks correct. However, when I calculate ##\pi/8 + 1/3##, I get 0.726 instead of 0.760. But, the important thing for this problem is that ##I_x = I_y##. Many books use the notation ##I_{xx}## and ##I_{yy}## for your ##I_x## and ##I_y##. Also, many books define ##I_{xy}## to have the opposite sign of your definition. But, I've seen both definitions used.

The question asks for the angles of orientation of the principal ##x'## and ##y'## axes. You calculated one angle equal to -45o. So, I think you should include some comments regarding how this calculated angle relates to the orientation of the ##x'## and ##y'## axes.
Yes, if you study how the mass is distributed about the ##x## and ##y## axes for this problem, then I think you can see that ##I_{xx}## should equal ##I_{yy}## without doing any calculation.
##0,726## yes sorry I left out the ##2##.

That would be fine then, wouldn't it?
 
Guillem_dlc said:
##0,726## yes sorry I left out the ##2##.

That would be fine then, wouldn't it?
Yes. Hopefully, the orientations of the principal axes are clear to you from your answer for the angle ##\sigma##.
 
TSny said:
Yes. Hopefully, the orientations of the principal axes are clear to you from your answer for the angle ##\sigma##.
I was told that the ##x##-axis was going to be the minimum and with ##-45## I was left with the maximum.

So I put that changing the angle to ##45## would leave the ##x## as the minimum.
 
Guillem_dlc said:
I was told that the ##x##-axis was going to be the minimum and with ##-45## I was left with the maximum.

So I put that changing the angle to ##45## would leave the ##x## as the minimum.
I don't understand what it means to say that the ##x##-axis is a minimum or a maximum. The important thing is to be able to draw or describe the orientation of the principal axes.
 
TSny said:
I don't understand what it means to say that the ##x##-axis is a minimum or a maximum. The important thing is to be able to draw or describe the orientation of the principal axes.
Apart from finding this principal angle, it was requested that the ##x'## axis (that is, the ##x##-axis of the principal axis) should be the minimum and the ##y##-axis the maximum. That is to say, about the principal axes, that there is one that must have a maximum moment of inertia and another one a minimum. So they told you that the principal ##x##-axis of inertia should be the minimum. So if you looked at the moment of inertia of each axis with the angle of ##-45^\circ##, then you got that the ##x## is the maximum and the ##y## is the minimum. And then I thought about the angle of ##45^\circ##, which in the end is the same. And then the moment of inertia of ##x## was already the minimum, you know?
 
OK. I see now. I agree that the principal moment of inertial about the axis at +45o would be smaller than the principal moment of inertia about the axis at -45o.
 
TSny said:
OK. I see now. I agree that the principal moment of inertial about the axis at +45o would be smaller than the principal moment of inertia about the axis at -45o.
Okay, so it would be fine then, wouldn't it?
 
  • #10
I believe so.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
19K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
19K
  • · Replies 5 ·
Replies
5
Views
3K