Is the Commutation Relation for Angular Operators in Hilbert Space Valid?

facenian
Messages
433
Reaction score
25
There must something wrong with my understanding of this relations because I think the usual way they are derived in many textbooks makes no sense. It goes like this, first assume that to every rotation O(a) in euclidean space there exists a rotation operator R(a) in Hilbert space,second: the relation stated first is an homomorphism T,that is T(O)=R
So far, so good the problem is that after verifying the relation O_x(da)O_y(db)-O_y(db)Ox(da)=O_z(dadb)-I, for infinitesimal rotations da and db in euclidean space the authors conclude that a similar relation holds for infinitesimal rotations in Hilbert space. This last step requieres that besides being T(O_1O_2)=T(O_1)T(O_2) which is ok, the relation
T(O_1+O_2)=T(O_1)+T(O_2) must also hold.
is it correct what I'm saying? in which case, why should T(O_1+O_2)=T(O_1)+T(O_2) hold?
 
Physics news on Phys.org
Note that the rotation group is not closed under addition, so O_1 + O_2 is not, in general, a member of the group, and O_1 + O_2 is not in the domain of the group homomorphism T.

The infinitesimal elements (the Lie algebra) of a (Lie) group, however, do form a vector space, and a homomorphism between two Lie groups (in this case the rotation group and a group of operators) gives rise to a (linear) homomorphism between corresponding Lie algebras of infinitesimals (vector spaces).
 
So you say that in the last sentece I posted T should be replaced by another homomorphism P this time between to vector spaces so P(O_1 + O_2)=P(O_1) + P(O_2) holds. Now it makes sense however a don't think it is trivial and should be explained properly in Texts.
Thank you.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top