MHB Is the Converse of the Given Statement True for Any Positive Integer n?

  • Thread starter Thread starter johnny009
  • Start date Start date
  • Tags Tags
    Proof Structure
johnny009
Messages
6
Reaction score
0
if n is a positive integer greater than 2 and m the smallest integer greater than or = n, that is a perfect square.
Let a = m-n.

Show that if n is prime, then a is not a perfect square.

Also, is the converse of above true, for any integer n?

any guidance, will be much appreciated?

Thanks
 
Mathematics news on Phys.org
johnny009 said:
if n is a positive integer greater than 2 and m the smallest integer greater than or = n, that is a perfect square.
Let a = m-n.

Show that if n is prime, then a is not a perfect square.

Also, is the converse of above true, for any integer n?
any guidance, will be much appreciated?Thanks

Hey johnny009! Welcome to MHB! (Smile)Guidance: let's try a couple of examples, starting with the simplest we can think of.The smallest prime $n$ is $3$, in which case $m=2^2=4$, and $a=4-3=1$, which is a perfect square!
Ah well, maybe $a=1$ is a special case...

Let's try again, the next prime $n$ is $5$, so that $m=3^2=9$, and $a=9-5=4$, which is again a perfect square!

Erm... I think it's not true, and we have 2 counter examples to prove it.Continuing with $n=6$, we get $m=3^2=9$, and $a=9-6=3$, which is not a perfect square... and $n$ is not prime.
So we have a counter example for the converse as well.
 
I like Serena said:
Hey johnny009! Welcome to MHB! (Smile)Guidance: let's try a couple of examples, starting with the simplest we can think of.The smallest prime $n$ is $3$, in which case $m=2^2=4$, and $a=4-3=1$, which is a perfect square!
Ah well, maybe $a=1$ is a special case...

Let's try again, the next prime $n$ is $5$, so that $m=3^2=9$, and $a=9-5=4$, which is again a perfect square!

Erm... I think it's not true, and we have 2 counter examples to prove it.Continuing with $n=6$, we get $m=3^2=9$, and $a=9-6=3$, which is not a perfect square... and $n$ is not prime.
So we have a counter example for the converse as well.
---------------------------------------------------------------------------------------------

Hi There,

Thanks a lot for the reply.

But, your solutions ignores the fact, that 'm' cannot be less than 'N' ...as per the QUESTION??

So, your solution...is not really addressing the Question.

CHEERS

John.
 
johnny009 said:
---------------------------------------------------------------------------------------------

Hi There,

Thanks a lot for the reply.

But, your solutions ignores the fact, that 'm' cannot be less than 'N' ........as per the QUESTION??

So, your solution...is not really addressing the Question.

CHEERS

John.

I'm assuming you mean 'n' instead of 'N', since there is no reference to 'N'?
Erm... in each of the examples $m\ge n$ as per the question... am I missing something? (Wondering)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top