- 14

- 2

- Problem Statement
- Is converse of this theorem true or not?

- Relevant Equations
- $$\lim_{n\to\infty} a_n$$

This theorem is from the stewart calculus book 11.1.6

If $$ \lim_{n\to\infty} |a_n| = 0$$, then $$\lim_{n\to\infty} a_n = 0$$

I wonder whether converse of this theorem true or not

If $$ \lim_{n\to\infty} |a_n| = 0$$, then $$\lim_{n\to\infty} a_n = 0$$

I wonder whether converse of this theorem true or not

Last edited: