Is the definite integral ∫ [arcsin(1/x)-1/x]of indeterminate form?

Click For Summary
SUMMARY

The definite integral $$\int_{1}^{\infty}\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx$$ is not of indeterminate form. The evaluation of this integral shows that it converges to a finite value, confirming its well-defined nature. The integral can be analyzed using techniques from improper integrals and limit evaluation, leading to a clear conclusion regarding its convergence.

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with the arcsine function
  • Knowledge of limit evaluation techniques
  • Basic calculus concepts, including integration
NEXT STEPS
  • Study the properties of improper integrals
  • Learn about the convergence of integrals involving trigonometric functions
  • Explore limit evaluation methods in calculus
  • Investigate the applications of the arcsine function in integration
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, integral analysis, and mathematical proofs.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Is the definite integral

$$\int_{1}^{\infty}\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx$$

of indeterminate form or not? Prove your statement.
 
Physics news on Phys.org
lfdahl said:
Is the definite integral

$$\int_{1}^{\infty}\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx$$

of indeterminate form or not? Prove your statement.

For $x > 1$ we have the indefinite form:
\begin{aligned}\int\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx
&= x \arcsin(1/x) - \int x\,d(\arcsin(1/x)) - \int \frac 1x\, dx \\
&= x \arcsin(1/x) - \int x\cdot \frac{1}{\sqrt{1-(1/x)^2}}\cdot -\frac 1{x^2}\,dx - \int \frac 1x\, dx \\
&= x \arcsin(1/x) + \int \frac{dx}{\sqrt{x^2-1}} - \ln x \\
&= x \arcsin(1/x) + \ln\left({\sqrt{x^2-1}} + x\right) - \ln x + C \\
&= x \arcsin(1/x) + \ln\left({\sqrt{1-1/x^2}} + 1\right) + C
\end{aligned}
Thus the improper definite integral is:
\begin{aligned}\int_1^\infty\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx
&= \left[ x \arcsin(1/x) + \ln\left({\sqrt{1-1/x^2}} + 1\right) \right]_1^\infty\\
&= \lim_{a\to\infty} a \arcsin(1/a) + \ln 2 - \arcsin 1 \\
&= \lim_{a\to\infty}\left[ \frac{\arcsin(1/a)}{1/a} \right] + \ln 2 - \frac\pi 2 \\
&= \lim_{a\to\infty}\left[ \frac{\frac 1{\sqrt{1-1/a^2}}\cdot -\frac 1{a^2}}{-\frac1{a^2}} \right] + \ln 2 - \frac\pi 2 \\
&= 1 + \ln 2 - \frac\pi 2
\end{aligned}

Therefore the given improper definite integral is determinate.
 
I like Serena said:
For $x > 1$ we have:
\begin{aligned}\int\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx
&= x \arcsin(1/x) - \int x\,d(\arcsin(1/x)) - \int \frac 1x\, dx \\
&= x \arcsin(1/x) - \int x\cdot \frac{1}{\sqrt{1-(1/x)^2}}\cdot -\frac 1{x^2}\,dx - \int \frac 1x\, dx \\
&= x \arcsin(1/x) + \int \frac{dx}{\sqrt{x^2-1}} - \ln x \\
&= x \arcsin(1/x) + \ln\left({\sqrt{x^2-1}} + x\right) - \ln x \\
&= x \arcsin(1/x) + \ln\left({\sqrt{1-1/x^2}} + 1\right)
\end{aligned}
Thus:
\begin{aligned}\int_1^\infty\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx
&= \left[ x \arcsin(1/x) + \ln\left({\sqrt{1-1/x^2}} + 1\right) \right]_1^\infty\\
&= \lim_{a\to\infty} a \arcsin(1/a) + \ln 2 - \arcsin 1 \\
&= \lim_{a\to\infty}\left[ \frac{\arcsin(1/a)}{1/a} \right] + \ln 2 - \frac\pi 2 \\
&= \lim_{a\to\infty}\left[ \frac{\frac 1{\sqrt{1-1/a^2}}\cdot -\frac 1{a^2}}{-\frac1{a^2}} \right] + \ln 2 - \frac\pi 2 \\
&= 1 + \ln 2 - \frac\pi 2
\end{aligned}

Great job, I like Serena! (Nod) Thankyou for your participation!
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K