MHB Is the definite integral ∫ [arcsin(1/x)-1/x]of indeterminate form?

Click For Summary
The definite integral ∫[arcsin(1/x) - 1/x] dx from 1 to infinity is analyzed for its convergence and whether it is of indeterminate form. The integrand approaches zero as x approaches infinity, suggesting potential convergence. However, a detailed evaluation is needed to determine if the integral converges or diverges. The discussion emphasizes the importance of proving the behavior of the integrand at the limits of integration. Ultimately, the conclusion regarding the integral's form hinges on rigorous mathematical proof.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Is the definite integral

$$\int_{1}^{\infty}\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx$$

of indeterminate form or not? Prove your statement.
 
Mathematics news on Phys.org
lfdahl said:
Is the definite integral

$$\int_{1}^{\infty}\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx$$

of indeterminate form or not? Prove your statement.

For $x > 1$ we have the indefinite form:
\begin{aligned}\int\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx
&= x \arcsin(1/x) - \int x\,d(\arcsin(1/x)) - \int \frac 1x\, dx \\
&= x \arcsin(1/x) - \int x\cdot \frac{1}{\sqrt{1-(1/x)^2}}\cdot -\frac 1{x^2}\,dx - \int \frac 1x\, dx \\
&= x \arcsin(1/x) + \int \frac{dx}{\sqrt{x^2-1}} - \ln x \\
&= x \arcsin(1/x) + \ln\left({\sqrt{x^2-1}} + x\right) - \ln x + C \\
&= x \arcsin(1/x) + \ln\left({\sqrt{1-1/x^2}} + 1\right) + C
\end{aligned}
Thus the improper definite integral is:
\begin{aligned}\int_1^\infty\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx
&= \left[ x \arcsin(1/x) + \ln\left({\sqrt{1-1/x^2}} + 1\right) \right]_1^\infty\\
&= \lim_{a\to\infty} a \arcsin(1/a) + \ln 2 - \arcsin 1 \\
&= \lim_{a\to\infty}\left[ \frac{\arcsin(1/a)}{1/a} \right] + \ln 2 - \frac\pi 2 \\
&= \lim_{a\to\infty}\left[ \frac{\frac 1{\sqrt{1-1/a^2}}\cdot -\frac 1{a^2}}{-\frac1{a^2}} \right] + \ln 2 - \frac\pi 2 \\
&= 1 + \ln 2 - \frac\pi 2
\end{aligned}

Therefore the given improper definite integral is determinate.
 
I like Serena said:
For $x > 1$ we have:
\begin{aligned}\int\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx
&= x \arcsin(1/x) - \int x\,d(\arcsin(1/x)) - \int \frac 1x\, dx \\
&= x \arcsin(1/x) - \int x\cdot \frac{1}{\sqrt{1-(1/x)^2}}\cdot -\frac 1{x^2}\,dx - \int \frac 1x\, dx \\
&= x \arcsin(1/x) + \int \frac{dx}{\sqrt{x^2-1}} - \ln x \\
&= x \arcsin(1/x) + \ln\left({\sqrt{x^2-1}} + x\right) - \ln x \\
&= x \arcsin(1/x) + \ln\left({\sqrt{1-1/x^2}} + 1\right)
\end{aligned}
Thus:
\begin{aligned}\int_1^\infty\left(\arcsin \left(\frac{1}{x}\right)-\frac{1}{x} \right)\,dx
&= \left[ x \arcsin(1/x) + \ln\left({\sqrt{1-1/x^2}} + 1\right) \right]_1^\infty\\
&= \lim_{a\to\infty} a \arcsin(1/a) + \ln 2 - \arcsin 1 \\
&= \lim_{a\to\infty}\left[ \frac{\arcsin(1/a)}{1/a} \right] + \ln 2 - \frac\pi 2 \\
&= \lim_{a\to\infty}\left[ \frac{\frac 1{\sqrt{1-1/a^2}}\cdot -\frac 1{a^2}}{-\frac1{a^2}} \right] + \ln 2 - \frac\pi 2 \\
&= 1 + \ln 2 - \frac\pi 2
\end{aligned}

Great job, I like Serena! (Nod) Thankyou for your participation!
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
6K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K