MHB Is the given quantity an integer?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The quantity $y=(2\cdot\sqrt[3]{2}+1-\sqrt{12\cdot\sqrt[3]{2}-15})^3$ is under scrutiny to determine if it is exactly an integer. Participants discuss the components of the expression, particularly focusing on the cube root and square root involved. The consensus leans towards evaluating the inner terms to ascertain their integer nature before cubing the result. Justifications include simplifying the expression and examining numerical approximations. Ultimately, the discussion aims to clarify whether the approximation holds true as an exact integer.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Your calculator tells you that the quantity $y=(2\cdot\sqrt[3]{2}+1-\sqrt{12\cdot\sqrt[3]{2}-15})^3$ is approximately an integer. Is $y$ exactly an integer? Justify your answer.
 
Mathematics news on Phys.org
anemone said:
Your calculator tells you that the quantity $y=(2\cdot\sqrt[3]{2}+1-\sqrt{12\cdot\sqrt[3]{2}-15})^3$ is approximately an integer. Is $y$ exactly an integer? Justify your answer.

yes it is 32

as

Because under the square root we have $\sqrt[3]{2}$
It suggests that the square root is
a + b $\sqrt[3]{2}$ + c $\sqrt[3]{4}$
And taking square we get
$a^2+ b^2\sqrt[3]{4} +2c^2\sqrt[3]{4} +2ab\sqrt[3]{2} + 4bc + 2ac\sqrt[3]{4} = 12\sqrt[3]{2}−15$
Equating the parts that is rational , $\sqrt[3]{2}$ and $\sqrt[3]{4}$
We get
$a^2 + 4bc = - 15$
$b^2 + 2ac = 0$
$c^2 + ab = 6$
Solving these ( I do not know how to solve but guess work a = 1, b= 2, c =- 2
so square root = 1 + 2 $\sqrt[3]{2}$ - 2 $\sqrt[3]{4}$

so given expression is 2 $\sqrt[3]{4}$ which is cubed to give 32
 
anemone said:
Your calculator tells you that the quantity $y=(2\cdot\sqrt[3]{2}+1-\sqrt{12\cdot\sqrt[3]{2}-15})^3$ is approximately an integer. Is $y$ exactly an integer? Justify your answer.
let $\sqrt[3]{2}=x$
we have :$x^3=2---(1)$
$y= (2x+1-\sqrt {12x-15})^3$
if y is an integer then we may suggest :
$\sqrt {12x-5}=2x+1-ax^2---(2)$
(here a is an integer)
square both sides of (2) and use of (1) we get a=2
$\therefore y=(2x^2)^3=32$
 
Last edited:
Thank you all for participating and sorry for the late reply. :o

Suggested solution by other:

According to the calculator, $y$ is approximately equal to 32, and so we would like to decide whether or not the quantity $x=2\cdot\sqrt[3]{2}+1-\sqrt{12\cdot\sqrt[3]{2}-15}$ is exactly equal to $\sqrt[3]{32}$.

For notational simplicity, let $a=\sqrt[3]{2}$ so that $x=2a+1-\sqrt{12a-15}$.

Also, since $32=2^5$, we see that $\sqrt[3]{32}=2a^2$ and hence we need to determine whether or not the equation $\sqrt{12a-15}=2a+1-2a^2$ is valid.

Using calculator, we see that the right side of this equation exceeds 0.3, and so it is definitely positive. We can thus check the equation by showing that the squares of both sides are equal. If we square the right side and combine like terms, we get $4a^4-8a^3+4a+1$. But since $a^3=2$, we see that $a^4=2a$ and thus $4a^4-8a^3+4a+1=12a-15$. Consequently, our equation is true, and $y$ is indeed exactly equal to 32.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top