Is the given quantity an integer?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The expression $y=(2\cdot\sqrt[3]{2}+1-\sqrt{12\cdot\sqrt[3]{2}-15})^3$ is evaluated to determine if it is an exact integer. Through simplification, it is established that $y$ is indeed an integer, as the components within the expression resolve to rational numbers. The discussion emphasizes the importance of algebraic manipulation and verification of results using precise mathematical techniques.

PREREQUISITES
  • Understanding of cube roots and square roots
  • Familiarity with algebraic expressions and simplification techniques
  • Knowledge of rational and irrational numbers
  • Basic proficiency in mathematical proofs and justifications
NEXT STEPS
  • Study algebraic manipulation techniques for complex expressions
  • Learn about properties of cube roots and their implications
  • Explore methods for verifying integer solutions in algebraic equations
  • Investigate the relationship between rational and irrational numbers in mathematical proofs
USEFUL FOR

Mathematicians, educators, students studying algebra, and anyone interested in the properties of numbers and expressions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Your calculator tells you that the quantity $y=(2\cdot\sqrt[3]{2}+1-\sqrt{12\cdot\sqrt[3]{2}-15})^3$ is approximately an integer. Is $y$ exactly an integer? Justify your answer.
 
Mathematics news on Phys.org
anemone said:
Your calculator tells you that the quantity $y=(2\cdot\sqrt[3]{2}+1-\sqrt{12\cdot\sqrt[3]{2}-15})^3$ is approximately an integer. Is $y$ exactly an integer? Justify your answer.

yes it is 32

as

Because under the square root we have $\sqrt[3]{2}$
It suggests that the square root is
a + b $\sqrt[3]{2}$ + c $\sqrt[3]{4}$
And taking square we get
$a^2+ b^2\sqrt[3]{4} +2c^2\sqrt[3]{4} +2ab\sqrt[3]{2} + 4bc + 2ac\sqrt[3]{4} = 12\sqrt[3]{2}−15$
Equating the parts that is rational , $\sqrt[3]{2}$ and $\sqrt[3]{4}$
We get
$a^2 + 4bc = - 15$
$b^2 + 2ac = 0$
$c^2 + ab = 6$
Solving these ( I do not know how to solve but guess work a = 1, b= 2, c =- 2
so square root = 1 + 2 $\sqrt[3]{2}$ - 2 $\sqrt[3]{4}$

so given expression is 2 $\sqrt[3]{4}$ which is cubed to give 32
 
anemone said:
Your calculator tells you that the quantity $y=(2\cdot\sqrt[3]{2}+1-\sqrt{12\cdot\sqrt[3]{2}-15})^3$ is approximately an integer. Is $y$ exactly an integer? Justify your answer.
let $\sqrt[3]{2}=x$
we have :$x^3=2---(1)$
$y= (2x+1-\sqrt {12x-15})^3$
if y is an integer then we may suggest :
$\sqrt {12x-5}=2x+1-ax^2---(2)$
(here a is an integer)
square both sides of (2) and use of (1) we get a=2
$\therefore y=(2x^2)^3=32$
 
Last edited:
Thank you all for participating and sorry for the late reply. :o

Suggested solution by other:

According to the calculator, $y$ is approximately equal to 32, and so we would like to decide whether or not the quantity $x=2\cdot\sqrt[3]{2}+1-\sqrt{12\cdot\sqrt[3]{2}-15}$ is exactly equal to $\sqrt[3]{32}$.

For notational simplicity, let $a=\sqrt[3]{2}$ so that $x=2a+1-\sqrt{12a-15}$.

Also, since $32=2^5$, we see that $\sqrt[3]{32}=2a^2$ and hence we need to determine whether or not the equation $\sqrt{12a-15}=2a+1-2a^2$ is valid.

Using calculator, we see that the right side of this equation exceeds 0.3, and so it is definitely positive. We can thus check the equation by showing that the squares of both sides are equal. If we square the right side and combine like terms, we get $4a^4-8a^3+4a+1$. But since $a^3=2$, we see that $a^4=2a$ and thus $4a^4-8a^3+4a+1=12a-15$. Consequently, our equation is true, and $y$ is indeed exactly equal to 32.
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
905
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K