MHB Is the Inequality $(a+b+c)^2+(x+y+z)^2≥1$ Always True?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The inequality $(a+b+c)^2 + (x+y+z)^2 \ge 1$ is proven to be true under the conditions that $x, y, z > 0$ and $x^2 + a^2 = y^2 + b^2 = z^2 + c^2 = 1$. A geometric approach is employed, where points $P$, $Q$, and $R$ lie on the upper half of the unit circle, forming an obtuse triangle. The circumcenter $C$, centroid $G$, and orthocenter $H$ are analyzed, revealing that the distance from $C$ to $H$ exceeds 1. Consequently, the inequality is strengthened to $(a+b+c)^2 + (x+y+z)^2 > 1$, as equality cannot occur when $x, y, z$ are strictly positive.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z>0$ and $a,\,b,\,c$ be real numbers such that $x^2+a^2=y^2+b^2=z^2+c^2=1$.

Prove that $(a+b+c)^2+(x+y+z)^2\ge 1$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z>0$ and $a,\,b,\,c$ be real numbers such that $x^2+a^2=y^2+b^2=z^2+c^2=1$.

Prove that $(a+b+c)^2+(x+y+z)^2\ge 1$.
[sp]Here is a geometric approach to the problem.
[TIKZ]\clip (-6,-1) rectangle (12,12) ;
\draw [thin] (-6,0) -- (6,0) ;
\draw [thin] (0,-1) -- (0,10) ;
\coordinate [label=above left:{$P$}] (P) at (-4,3) ;
\coordinate [label=above right:{$Q$}] (Q) at (1.92,4.62) ;
\coordinate [label=right:{$R$}] (R) at (4.42,2.35) ;
\draw [thin,gray] (P) -- (3.17,3.5) ;
\draw [thin,gray] (Q) -- (0.21,2.675) ;
\draw [thin,gray] (R) -- (-1.04,3.81) ;
\coordinate [label=below:{$C$}] (C) at (0,0) ;
\coordinate [label=right:{$G$}] (G) at (0.78,3.33) ;
\coordinate [label=right:{$H$}] (H) at (2.34,10) ;
\coordinate [label=below:{$N$}] (N) at (1.75,2.55) ;
\draw [thin,gray] (H) -- (N) ;
\draw [red] (C) --(G) -- (H) ;
\foreach \point in {C,G,H}
\fill (\point) circle(2pt) ;
\draw (0,0) circle (5cm) ;
\draw (P) -- (Q) -- (R) -- cycle ;
[/TIKZ]​
Let $P = (a,x)$, $Q = (b,y)$ and $R = (c,z)$. The given conditions imply that $P,Q,R$ all lie on the upper half of the unit circle. Relabelling the points if necessary, we may assume that $Q$ lies on the arc between $P$ and $R$. Notice that the angle $PQR$ is obtuse.

The origin $C$ is the circumcentre of the triangle $PQR$. Let $G = \bigl(\frac13(a+b+c),\frac13(x+y+z)\bigr)$ be the centroid of the triangle, and let $H$ be the orthocentre (where the three perpendiculars from the vertices to the opposite sides meet). In particular, let $N$ be the point where the perpendicular from $Q$ meets the side $PR$. The fact that the angle at $Q$ is obtuse means that $N$ lies inside the unit circle on the segment $PR$, and $H$ lies outside the circle, on the opposite side of $Q$ from $N$. Therefore the distance $|CH|$ is greater than $1$.

The theory of the Euler line tells us that the points $C,G,H$ are collinear and that $|GH| = 2|CG|$, so that $|CH| = 3|CG|$. Since $G = \bigl(\frac13(a+b+c),\frac13(x+y+z)\bigr)$, it follows that $H = \bigl((a+b+c),(x+y+z)\bigr)$. But then the fact that $|CH| >1$ tells us that $(a+b+c)^2 + (x+y+z)^2 > 1.$[/sp]
 
Opalg said:
[sp]Here is a geometric approach to the problem.
[TIKZ]\clip (-6,-1) rectangle (12,12) ;
\draw [thin] (-6,0) -- (6,0) ;
\draw [thin] (0,-1) -- (0,10) ;
\coordinate [label=above left:{$P$}] (P) at (-4,3) ;
\coordinate [label=above right:{$Q$}] (Q) at (1.92,4.62) ;
\coordinate [label=right:{$R$}] (R) at (4.42,2.35) ;
\draw [thin,gray] (P) -- (3.17,3.5) ;
\draw [thin,gray] (Q) -- (0.21,2.675) ;
\draw [thin,gray] (R) -- (-1.04,3.81) ;
\coordinate [label=below:{$C$}] (C) at (0,0) ;
\coordinate [label=right:{$G$}] (G) at (0.78,3.33) ;
\coordinate [label=right:{$H$}] (H) at (2.34,10) ;
\coordinate [label=below:{$N$}] (N) at (1.75,2.55) ;
\draw [thin,gray] (H) -- (N) ;
\draw [red] (C) --(G) -- (H) ;
\foreach \point in {C,G,H}
\fill (\point) circle(2pt) ;
\draw (0,0) circle (5cm) ;
\draw (P) -- (Q) -- (R) -- cycle ;
[/TIKZ]​
Let $P = (a,x)$, $Q = (b,y)$ and $R = (c,z)$. The given conditions imply that $P,Q,R$ all lie on the upper half of the unit circle. Relabelling the points if necessary, we may assume that $Q$ lies on the arc between $P$ and $R$. Notice that the angle $PQR$ is obtuse.

The origin $C$ is the circumcentre of the triangle $PQR$. Let $G = \bigl(\frac13(a+b+c),\frac13(x+y+z)\bigr)$ be the centroid of the triangle, and let $H$ be the orthocentre (where the three perpendiculars from the vertices to the opposite sides meet). In particular, let $N$ be the point where the perpendicular from $Q$ meets the side $PR$. The fact that the angle at $Q$ is obtuse means that $N$ lies inside the unit circle on the segment $PR$, and $H$ lies outside the circle, on the opposite side of $Q$ from $N$. Therefore the distance $|CH|$ is greater than $1$.

The theory of the Euler line tells us that the points $C,G,H$ are collinear and that $|GH| = 2|CG|$, so that $|CH| = 3|CG|$. Since $G = \bigl(\frac13(a+b+c),\frac13(x+y+z)\bigr)$, it follows that $H = \bigl((a+b+c),(x+y+z)\bigr)$. But then the fact that $|CH| >1$ tells us that $(a+b+c)^2 + (x+y+z)^2 > 1.$[/sp]
but how can it be: $(a+b+c)^2+(x+y+z)^2=1\,\, ?$
for the question :$(a+b+c)^2+(x+y+z)^2\geq1 $
when will the equality happen ?
 
Last edited:
Since $x^2+a^2=1,$ therefore, $0<x\le1 $ and $|a|<1$ by the given conditions($x,y,z,a,b,c\in\mathbb{R}$). Similarly, $0<y,z\le1$ and $|b|,|c|<1$. Now, $$(x+y+z)^2+(a+b+c)^2=3+2(xy+yz+zx)+2(ab+bc+ca)\ge3+2(ab+bc+ca)$$ because of the positivity of $x,y,z$. Now, atleast one of $ab,bc$ or $ca$ must be positive and the minimum value of the sum of other two approaches $-2$. Note that when the negative products approach $-2$, the positive product approaches $1$.Therefore, $(x+y+z)^2+(a+b+c)^2\gt3+2(1)-2(2)=1$.
 
Last edited by a moderator:
Albert said:
but how can it be: $(a+b+c)^2+(x+y+z)^2=1\,\, ?$
for the question :$(a+b+c)^2+(x+y+z)^2\geq1 $
when will the equality happen ?
[sp]Equality can only happen in the limiting case where (in the diagram in my previous comment) $P$ and $Q$ are on the $x$-axis at the points $\pm1$. But the question stipulates that $x$, $y$ and $z$ are strictly positive. That implies that the limiting case cannot occur, and so the conclusion can be strengthened to $(a+b+c)^2+(x+y+z)^2 > 1 $.[/sp]
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top