Is the Limit of x^4 and y^4 as (x,y)->(0,1) Equal?

  • Thread starter Thread starter ImAnEngineer
  • Start date Start date
  • Tags Tags
    Limit Variables
ImAnEngineer
Messages
209
Reaction score
1
In my calculus book it says that the limit of y(x^3) as (x,y)->(0,1) equals 0. It also says that a limit does not exist if you obtain different values when approaching (0,1) from different paths.
It is easy to see the limit is zero by using the product rule for limits. However, if I set x=y, we get the limit of x^4 as (x,y)->(0,1) or the limit of y^4 as (x,y)->(0,1) which are clearly not equal. Hence the limit does not exist (?).

Where is my reasoning false?
 
Physics news on Phys.org
ImAnEngineer said:
In my calculus book it says that the limit of y(x^3) as (x,y)->(0,1) equals 0. It also says that a limit does not exist if you obtain different values when approaching (0,1) from different paths.
It is easy to see the limit is zero by using the product rule for limits. However, if I set x=y, we get the limit of x^4 as (x,y)->(0,1) or the limit of y^4 as (x,y)->(0,1) which are clearly not equal. Hence the limit does not exist (?).

Where is my reasoning false?

By thinking that you can get to (0,1) along a path where x=y?

Cheers -- sylas
 
Haha, how stupid is that! :)

So I could substitute x=y-1, then the limit becomes (y-1)y^4 as (x,y)->(0,1) which DOES equal zero and everything works out. Thanks!
 
ImAnEngineer said:
Haha, how stupid is that! :)

So I could substitute x=y-1, then the limit becomes (y-1)y^4 as (x,y)->(0,1) which DOES equal zero and everything works out. Thanks!

You're welcome. Always glad to contribute another data point on the war between engineers and scientists. :biggrin:
 
Back
Top