MHB Is the mapping from $\mathcal{L}^p(X,\mu)$ to $\mathcal{L}^1(X,\mu)$ continuous?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
The discussion centers on the continuity of the mapping from $\mathcal{L}^p(X,\mu)$ to $\mathcal{L}^1(X,\mu)$, specifically the transformation that sends a function $f$ to $\lvert f\rvert^p$. It explores the conditions under which this mapping remains continuous for positive measure spaces $(X,\mu)$ when $0 < p < \infty$. The problem remains unanswered by participants, prompting the original poster to share their own solution. The thread emphasizes the importance of understanding the properties of function spaces in measure theory. Overall, the continuity of this mapping is a significant topic in functional analysis.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $(X,\mu)$ be a positive measure space. For $0 < p < \infty$, why is the mapping $\mathcal{L}^p(X,\mu) \to \mathcal{L}^1(X,\mu)$ sending $f$ to $\lvert f\rvert^p$, continuous?-----Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
For all pairs of nonnegative numbers $a, b$, $\lvert a^p - b^p\rvert \le \lvert a - b\rvert^p$ if $0 < p < 1$, and $\lvert a^p - b^p\rvert \le p(a^{p-1} + b^{p-1})\lvert a - b\rvert$ if $p \ge 1$. Thus, for all $f, g\in \mathcal{L}^p(X,\mu)$,

$$\| \lvert f\rvert^p - \lvert g\rvert^p \|_1 \le \|f - g\|_p^p \quad (0 < p < \infty)$$

and for $1\le p < \infty$,

$$\|\lvert f\rvert^p - \lvert g\rvert^p\|_1 \le p\int_X \lvert f\rvert^{p-1}\lvert f - g\rvert\, d\mu + p\int_X \lvert g\rvert^{p-1}\lvert f - g\vert\, d\mu \le p(\|f\|_p\|f - g\|_p + \|g\|_p\|f - g\|_p) = p(\|f\|_p + \|g\|_p)\|f - g\|_p$$

using Hölder's inequality in the penultimate step. These inequalities imply continuity of the map $f\mapsto \lvert f\rvert^p$ from $\mathcal{L}^p(X,\mu)$ to $\mathcal{L}^1(X,\mu)$.